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For the sake of sake of concreteness, you can define the sum of an array as
follows.

sum([]1) = 0
sum([x1,x2...xn]) = x1 + sum [x2...xn]

It’s may be useful to consider and prove some formal properties of sums. For
example, if S is a finite indexing set,
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— This one has several corollaries.
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— Using Taylor Series and using finite geometric series.
Next try some products and open-ended sums.
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Now for some difficult sums that can be done using tricks etc.

e “Telescoping”
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