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For the sake of sake of concreteness, you can de�ne the sum of an array as

follows.

sum([]) = 0

sum([x1,x2...xn]) = x1 + sum [x2...xn]

It's may be useful to consider and prove some formal properties of sums. For

example, if S is a �nite indexing set,

• Σi∈Sai + bi = (Σi∈Sai) + (Σi∈Sbi)

• Σi∈Skai = kΣi∈Sai

• Σi∈Sai = Σj∈Taf(j) if f : T → S is a bijection

• ΣN
i=0i = 1

2N(N + 1)
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� This one has several corollaries.

• ΣN
i=0r

i = 1−rN+1

1−r
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� Using Taylor Series and using �nite geometric series.

Next try some products and open-ended sums.

• ΠN
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k
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• limn→∞
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Now for some di�cult sums that can be done using tricks etc.

• �Telescoping�
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