Sums and Products

Clay Thomas

February 5, 2015

For the sake of sake of concreteness, you can define the sum of an array as follows.

$$
\begin{aligned}
& \operatorname{sum}([])=0 \\
& \operatorname{sum}([x 1, x 2 \ldots x n])=x 1+\operatorname{sum}[x 2 \ldots x n]
\end{aligned}
$$

It's may be useful to consider and prove some formal properties of sums. For example, if S is a finite indexing set,

- $\Sigma_{i \in S} a_{i}+b_{i}=\left(\Sigma_{i \in S} a_{i}\right)+\left(\Sigma_{i \in S} b_{i}\right)$
- $\Sigma_{i \in S} k a_{i}=k \Sigma_{i \in S} a_{i}$
- $\Sigma_{i \in S} a_{i}=\Sigma_{j \in T} a_{f(j)}$ if $f: T \rightarrow S$ is a bijection
- $\Sigma_{i=0}^{N} i=\frac{1}{2} N(N+1)$
- $\sum_{i=0}^{N} i^{2}=\frac{1}{6} N(2 N+1)(N+1)$
- $\Sigma_{i=0}^{N} i^{3}=\frac{1}{4} N^{2}(N+1)^{2}$
- This one has several corollaries.
- $\sum_{i=0}^{N} r^{i}=\frac{1-r^{N+1}}{1-r}$
- $\Sigma_{i=0}^{\infty} r^{i}=\frac{1}{1-r}$
- Using Taylor Series and using finite geometric series.

Next try some products and open-ended sums.

- $\Pi_{k=1}^{N} a^{k}$
- $\Pi_{k=10}^{30} a^{k} / b$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} e^{k / n}$
- $\Sigma_{i=0}^{10} \Sigma_{j=0}^{i}(i+2 j+1)$
- $\Sigma_{i=0}^{100} \Sigma_{j=0}^{100}(i+j)^{2}$

Now for some difficult sums that can be done using tricks etc.

- "Telescoping"

$$
\begin{aligned}
& -\sum_{n=2}^{\infty} \frac{1}{n(n+1)} \\
& -\sum_{n=2}^{\infty} \frac{2 n+1}{n^{4}+2 n^{3}+n^{2}}
\end{aligned}
$$

- $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$

