Quantifiers and Predicates

Clay Thomas

February 4, 2015

Try and express the following propositions using only the notions of addition, multiplication, and quantifier logic (with the universe taken to be \mathbb{N}_{0}). The following examples are all taken from Godel, Escher, Bach by Douglas Hofstadter, chapter VIII.

- 5 is prime.
- 2 is not a perfect square.
- 1729 is a sum of two cubes.
- No sum of two positive cubes is itself a cube.
- There are infinitely many prime numbers.
- 6 is even.

The next few work in the opposite direction: translate these to English, first by directly thinking about the quantifiers, then by doing some more interpretation. Next judge whether each statement is true or false.

- $\forall c: \exists b:(2 \cdot b=c)$
- $\forall c: \neg \exists b:(2 \cdot b=c)$
- $\forall c: \exists b: \neg \neg \neg(2 \cdot b=c)$
- $\neg \exists b: \forall c:(2 \cdot b=c)$
- $\exists b: \neg \forall c:(2 \cdot b=c)$
- $\exists b: \forall c:(2 \cdot b=c)$

A little later in the chapter Hofstadter gives some more translation problems. Again, you are only supposed to use addition, multiplication, and quantifiers in your answers.

- All natural numbers are equal to 4 .
- There is no natural number which equals its own square.
- Different natural numbers have different successors.
- If 1 equals 0 , then every number is odd.
- b is a power of 2 .
- b is a power of 10 .

Note that the last two of the above are quite difficult.

