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Motivation

• An attempt to synthesize the max function using PBE:
• (13, 15) 7→ 15
• (−23, 19) 7→ 19
• (−75,−13) 7→ −13

• Synthesized program: P(a,b):=return b

• Neither synthesized program, nor synthesizer are robust
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Robustness

• Robustness: behaving predictably on uncertain inputs [2]

• P(13,15) 6= P(15,13)

• • (15, 13) 7→ 15
• (19,−23) 7→ 19
• (−13,−75) 7→ −13

would synthesize very different program

• Synthesize a robust program or develop robust synthesizer
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Robustness Properties

• Continuity: small change to input ⇒ small change to output

Sort([1,4,3,6])=[1,3,4,6]

Sort([2,3,3,5])=[2,3,3,5]

• Permutation: permuting input leaves output invariant

Sort([1,4,3,6])=[1,3,4,6]

Sort([6,3,1,4])=[1,3,4,6]

• Simultaneous Permutation: permuting all inputs leaves
output invariant (Grade(responses,answers))

Grade([sqrt(x^2), 1/e, 6.5], [abs(x), e^-1, 13/2])=1

rearrange problem parts
Grade([1/e, 6.5, sqrt(x^2)], [e^-1, 13/2, abs(x)])=1
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Verifying Continuity [1]

• Consider

1: if x ≥ 0 then
2: r := y
3: else
4: r := z

• If y 6= z , discontinuous at x = 0

• Proof rule:

c ` Cont(P1, In,Out) c ` Cont(P2, In,Out)

c ′ ` Cont(b,Var(b)) (c ∧ ¬c ′) ` OutP1 = OutP2

c ` Cont(if b then P1 else P2, In,Out)

• Only applicable to numerical perturbations
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Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program

• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:

• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties
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Our Contributions

Goals:

• Reason about invariance under discrete perturbations

• Want to optimize for our specific problem

Results:

• Small sets of perturbations that “generate” all perturbations
• Lists, binary search trees

• Formulate “invariance with respect to a function”
• General, sound procedure

• Sanity checks and bug finding



Lists – Invariance under order

Given an array a

• Let aswap be a with its first and second entry swapped
• [a[1], a[0], a[2], a[3], . . . , a[n]]

• Let arot be a rotated by 1
• [a[1], a[2], a[3], . . . a[n], a[0]]

Lemma: If for any a, P(a) = P(aswap) = P(arot), then for any
permutation a′ of a, we have P(a) = P(a′).
Proof: Math [3]



Programs – Invariance under order

• maxList([x]) = x

• maxList([x, ...xs...]) = max(x, maxList(xs))

• Verifying maxList(a) = maxList(aswap) has one case:

maxList([x , y , ...xs...])
?
= maxList([y , x , ...xs...])

|| ||
max(x ,maxList([y , ...xs...])) max(y ,maxList([x , ...xs...]))

|| ||
max(x ,max(y ,maxList(xs))) max(y ,max(x ,maxList(xs)))

|| ||
max(x ,max(y , z)) max(y ,max(x , z))



Binary Search Trees

• For lists, two simple permutations generated all permutations

• Goal: similar permutations for BSTs



Binary Search Trees
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Binary Search Trees

It suffices to show

• Every tree can be
transformed into a “normal
form” (i.e. list)

• “flatten” straightens out
the tree

• “rotate” lets you
straighten all the parts

• Every operation is reversable

1

∅ 2

∅ 3

∅ 4

∅ 5

∅ 6



Lists and Binary Search Trees

• Can check robustness under ALL permutations by checking
just TWO permutations



More General Procedure

• Sets of permutations are case-by-case

• Goal: formulation of invariance
• Useful
• Easy to code/express
• Checkable



More General Procedure

Invariance of a program P : T → Z relative to a function
f : T → T ′

• f (t) gives a “canonical representative” of t

• For concreteness, f = list : BST → List

Observation: The following are equivalent:

• list(x) = list(y) =⇒ P(x) = P(y)

• There exists a program P̃ : Lists → Z such that
P(t) = P̃(list(t))

BSTs Z

Lists

P

list P̃



More General Procedure

• Idea: Synthesize a witness to the invariance
• A function P̃ : Lists → Z

• P and list provide a full specification of P̃

• Counterexample guided inductive synthesis [4]

BSTs Z

Lists

P

list P̃



More General Procedure

Input P. Let E = {}.

Synthesize a program
P̃ : Lists → Z
given examples

{(list(t),P(t))|t ∈ E}

Verify whether
P̃(list(t)) is equiv-

alent to P(t)

return YES

Check if there are
any t ∈ E such that
list(t) = list(t0),
yet P(t) 6= P(t0)

return NO

Add t0 to the
example set E

No, with
counterexample t0 ∈ BSTs

Yes, equivalent

No, t does
not exists

Yes, t exists



Future Directions

• Develop proof rules for discrete perturbations

• Improved handling of branching programs by Cartesian Hoare
Logic

• Working implementation of Cartesian Hoare Logic

• Find more data structures with small perturbation sets

• Speed up our general procedure

• Synthesis for verification?

• Implement!
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