
Verifying Robustness of Programs Under
Structural Perturbations

Clay Thomas and Jacob Bond

December 7, 2017

Motivation

• An attempt to synthesize the max function using PBE:
• (13, 15) 7→ 15
• (−23, 19) 7→ 19
• (−75,−13) 7→ −13

• Synthesized program: P(a,b):=return b

• Neither synthesized program, nor synthesizer are robust

Motivation

• An attempt to synthesize the max function using PBE:
• (13, 15) 7→ 15
• (−23, 19) 7→ 19
• (−75,−13) 7→ −13

• Synthesized program: P(a,b):=return b

• Neither synthesized program, nor synthesizer are robust

Motivation

• An attempt to synthesize the max function using PBE:
• (13, 15) 7→ 15
• (−23, 19) 7→ 19
• (−75,−13) 7→ −13

• Synthesized program: P(a,b):=return b

• Neither synthesized program, nor synthesizer are robust

Robustness

• Robustness: behaving predictably on uncertain inputs [2]

• P(13,15) 6= P(15,13)

• • (15, 13) 7→ 15
• (19,−23) 7→ 19
• (−13,−75) 7→ −13

would synthesize very different program

• Synthesize a robust program or develop robust synthesizer

Robustness

• Robustness: behaving predictably on uncertain inputs [2]

• P(13,15) 6= P(15,13)

• • (15, 13) 7→ 15
• (19,−23) 7→ 19
• (−13,−75) 7→ −13

would synthesize very different program

• Synthesize a robust program or develop robust synthesizer

Robustness

• Robustness: behaving predictably on uncertain inputs [2]

• P(13,15) 6= P(15,13)

• • (15, 13) 7→ 15
• (19,−23) 7→ 19
• (−13,−75) 7→ −13

would synthesize very different program

• Synthesize a robust program or develop robust synthesizer

Robustness

• Robustness: behaving predictably on uncertain inputs [2]

• P(13,15) 6= P(15,13)

• • (15, 13) 7→ 15
• (19,−23) 7→ 19
• (−13,−75) 7→ −13

would synthesize very different program

• Synthesize a robust program or develop robust synthesizer

Robustness Properties

• Continuity: small change to input ⇒ small change to output

Sort([1,4,3,6])=[1,3,4,6]

Sort([2,3,3,5])=[2,3,3,5]

• Permutation: permuting input leaves output invariant

Sort([1,4,3,6])=[1,3,4,6]

Sort([6,3,1,4])=[1,3,4,6]

• Simultaneous Permutation: permuting all inputs leaves
output invariant (Grade(responses,answers))

Grade([sqrt(x^2), 1/e, 6.5], [abs(x), e^-1, 13/2])=1

rearrange problem parts
Grade([1/e, 6.5, sqrt(x^2)], [e^-1, 13/2, abs(x)])=1

Robustness Properties

• Continuity: small change to input ⇒ small change to output

Sort([1,4,3,6])=[1,3,4,6]

Sort([2,3,3,5])=[2,3,3,5]

• Permutation: permuting input leaves output invariant

Sort([1,4,3,6])=[1,3,4,6]

Sort([6,3,1,4])=[1,3,4,6]

• Simultaneous Permutation: permuting all inputs leaves
output invariant (Grade(responses,answers))

Grade([sqrt(x^2), 1/e, 6.5], [abs(x), e^-1, 13/2])=1

rearrange problem parts
Grade([1/e, 6.5, sqrt(x^2)], [e^-1, 13/2, abs(x)])=1

Robustness Properties

• Continuity: small change to input ⇒ small change to output

Sort([1,4,3,6])=[1,3,4,6]

Sort([2,3,3,5])=[2,3,3,5]

• Permutation: permuting input leaves output invariant

Sort([1,4,3,6])=[1,3,4,6]

Sort([6,3,1,4])=[1,3,4,6]

• Simultaneous Permutation: permuting all inputs leaves
output invariant (Grade(responses,answers))

Grade([sqrt(x^2), 1/e, 6.5], [abs(x), e^-1, 13/2])=1

rearrange problem parts
Grade([1/e, 6.5, sqrt(x^2)], [e^-1, 13/2, abs(x)])=1

Verifying Continuity [1]

• Consider

1: if x ≥ 0 then
2: r := y
3: else
4: r := z

• If y 6= z , discontinuous at x = 0

• Proof rule:

c ` Cont(P1, In,Out) c ` Cont(P2, In,Out)

c ′ ` Cont(b,Var(b)) (c ∧ ¬c ′) ` OutP1 = OutP2

c ` Cont(if b then P1 else P2, In,Out)

• Only applicable to numerical perturbations

Verifying Continuity [1]

• Consider

1: if x ≥ 0 then
2: r := y
3: else
4: r := z

• If y 6= z , discontinuous at x = 0

• Proof rule:

c ` Cont(P1, In,Out) c ` Cont(P2, In,Out)

c ′ ` Cont(b,Var(b)) (c ∧ ¬c ′) ` OutP1 = OutP2

c ` Cont(if b then P1 else P2, In,Out)

• Only applicable to numerical perturbations

Verifying Continuity [1]

• Consider

1: if x ≥ 0 then
2: r := y
3: else
4: r := z

• If y 6= z , discontinuous at x = 0

• Proof rule:

c ` Cont(P1, In,Out) c ` Cont(P2, In,Out)

c ′ ` Cont(b,Var(b)) (c ∧ ¬c ′) ` OutP1 = OutP2

c ` Cont(if b then P1 else P2, In,Out)

• Only applicable to numerical perturbations

Verifying Continuity [1]

• Consider

1: if x ≥ 0 then
2: r := y
3: else
4: r := z

• If y 6= z , discontinuous at x = 0

• Proof rule:

c ` Cont(P1, In,Out) c ` Cont(P2, In,Out)

c ′ ` Cont(b,Var(b)) (c ∧ ¬c ′) ` OutP1 = OutP2

c ` Cont(if b then P1 else P2, In,Out)

• Only applicable to numerical perturbations

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program

• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:

• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program

• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:

• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program
• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:

• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program
• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:

• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program
• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:

• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program
• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:
• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program
• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:
• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program
• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:
• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Cartesian Hoare Logic [5]

• Robustness requires two executions

• Verified using product program
• P1 � P2 is simultaneous execution

• Cartesian Hoare Logic reasons about product programs

• Cartesian Hoare Triple examples:
• Determinism:

‖~x1 = ~x2‖f (~x)‖ret1 = ret2‖

• Symmetry:

‖x1 = y2 ∧ x2 = y1‖f (x , y)‖ret1 = ret2‖

• Requires specifying property in first-order logic

• Not optimized for 2-safety properties

Our Contributions

Goals:

• Reason about invariance under discrete perturbations

• Want to optimize for our specific problem

Results:

• Small sets of perturbations that “generate” all perturbations
• Lists, binary search trees

• Formulate “invariance with respect to a function”
• General, sound procedure

• Sanity checks and bug finding

Lists – Invariance under order

Given an array a

• Let aswap be a with its first and second entry swapped
• [a[1], a[0], a[2], a[3], . . . , a[n]]

• Let arot be a rotated by 1
• [a[1], a[2], a[3], . . . a[n], a[0]]

Lemma: If for any a, P(a) = P(aswap) = P(arot), then for any
permutation a′ of a, we have P(a) = P(a′).
Proof: Math [3]

Programs – Invariance under order

• maxList([x]) = x

• maxList([x, ...xs...]) = max(x, maxList(xs))

• Verifying maxList(a) = maxList(aswap) has one case:

maxList([x , y , ...xs...])
?
= maxList([y , x , ...xs...])

|| ||
max(x ,maxList([y , ...xs...])) max(y ,maxList([x , ...xs...]))

|| ||
max(x ,max(y ,maxList(xs))) max(y ,max(x ,maxList(xs)))

|| ||
max(x ,max(y , z)) max(y ,max(x , z))

Binary Search Trees

• For lists, two simple permutations generated all permutations

• Goal: similar permutations for BSTs

Binary Search Trees

b

a

LL LR

R
rotate7−−−→

a

LL
b

LR R

c

a

LL
b

LRL LRR

R flatten7−−−−→

c

b

a

LL LRL

LRR

R

Binary Search Trees

It suffices to show

• Every tree can be
transformed into a “normal
form” (i.e. list)

• “flatten” straightens out
the tree

• “rotate” lets you
straighten all the parts

• Every operation is reversable

1

∅ 2

∅ 3

∅ 4

∅ 5

∅ 6

Lists and Binary Search Trees

• Can check robustness under ALL permutations by checking
just TWO permutations

More General Procedure

• Sets of permutations are case-by-case

• Goal: formulation of invariance
• Useful
• Easy to code/express
• Checkable

More General Procedure

Invariance of a program P : T → Z relative to a function
f : T → T ′

• f (t) gives a “canonical representative” of t

• For concreteness, f = list : BST → List

Observation: The following are equivalent:

• list(x) = list(y) =⇒ P(x) = P(y)

• There exists a program P̃ : Lists → Z such that
P(t) = P̃(list(t))

BSTs Z

Lists

P

list P̃

More General Procedure

• Idea: Synthesize a witness to the invariance
• A function P̃ : Lists → Z

• P and list provide a full specification of P̃

• Counterexample guided inductive synthesis [4]

BSTs Z

Lists

P

list P̃

More General Procedure

Input P. Let E = {}.

Synthesize a program
P̃ : Lists → Z
given examples

{(list(t),P(t))|t ∈ E}

Verify whether
P̃(list(t)) is equiv-

alent to P(t)

return YES

Check if there are
any t ∈ E such that
list(t) = list(t0),
yet P(t) 6= P(t0)

return NO

Add t0 to the
example set E

No, with
counterexample t0 ∈ BSTs

Yes, equivalent

No, t does
not exists

Yes, t exists

Future Directions

• Develop proof rules for discrete perturbations

• Improved handling of branching programs by Cartesian Hoare
Logic

• Working implementation of Cartesian Hoare Logic

• Find more data structures with small perturbation sets

• Speed up our general procedure

• Synthesis for verification?

• Implement!

References

S. Chaudhuri, S. Gulwani, and R. Lublinerman.

Continuity analysis of programs.

POPL ’10, pages 57–70, New York, NY, USA, 2010. ACM.

S. Chaudhuri, S. Gulwani, and R. Lublinerman.

Continuity and robustness of programs.

Commun. ACM, 55(8):107–115, Aug. 2012.

D. S. Dummit and R. M. Foote.

Abstract Algebra.

John Wiley & Sons, 3rd edition, 2004.

A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia.

Combinatorial sketching for finite programs.

In ASPLOS-12, pages 404–415, Oct 2016.

M. Sousa and I. Dillig.

Cartesian hoare logic for verifying k-safety properties.

PLDI ’16, pages 57–69, New York, NY, USA, 2016. ACM.

