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Designing a Code

Typical failures are either small OR large but structured
(Correlated Erasures)

[CHLO7] [Gopalan,Hu,Kopparty,Saraf,Wang,Yekhanin (SODA 17)]
@ Design the topology
e Known failure patterns
e Heuristics; hardware
o Set limits of recoverability
® Set the coefficients

e Maximize recoverability
e Pure math



The Code Topology T(1,1,1) [GHK™17]
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The Code Topology T(1,1,1) [GHK™17]

Maximize Recoverability One extra, global redundancy

Where c is some linear function of the data symbols




T(a,b,h) [GHK*17]

Facebook: T(1,4,0) [SLR+14]

T(a, b, h):
e g column
parities

[HSX*12]

Microsoft: T(0,1,2)

e b row parities

o h global Local Codes: T(1,0,h) [GHSY12]

parities




The Code Topology T(1,1,1) [GHK™17]

View codewords as an m x n grid of symbols x; ;

e Rows are codewords in Crow

e Columns are codewords in Cqy) ‘ - - - -

e Satisfy global constraint that e e |

o WLOG Crow and Cgg are parity checks
e entries sum to 0

e A code instantiating T(1,1,1) is defined by the constants ~; ;.
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Maximal Recoverability [GHK'17]

Recall C instantiates T(1,1,1) by setting the coefficients ~; ;

As code C instantiating T(1,1,1) corrects an erasure pattern
E C [n] x [n] if the symbols x; ; for (i, ) € E can be recovered
from those in [n] x [n] — E.

E C [n] x [n] is correctable for T(1,1,1) if there is some code
instantiating T(1,1,1) which corrects E

A code for T(1,1,1) is maximally recoverable (MR) if it can
correct every correctable erasure pattern

e Good news: they exist [CHLO7]
e Bad news: require ;; € Fg for d linear in n

e [Kane, Lovett, Rao (FOCS 17)] [GHK"17]



e-Maximal Recoverability

e An e-MR code for a topology corrects all correctable erasure
patterns of size < e

e For T(1,1,1) and constant e, attain field size polynomial in n



Reducing to labeling problem [GHK™17]

Subsets of code symbols
Symbol (i, ) erased

Parity check weights ; ;
(Irreducible) correctable pattern

[111

!

Sets of vertices in K, 5
Edge (I,_]) S Kn,n

Edge weight v(i, /) € Fd
Simple cycle

with nonzero weight

1@ 0!
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Reducing to labeling problem [GHK™17]

Subsets of code symbols
Symbol (i, ) erased

Parity check weights ; ;
(Irreducible) correctable pattern

[111

!

Sets of vertices in K, 5
Edge (i,)) € Knn

Edge weight v(i, /) € Fd
Simple cycle

with nonzero weight

1@ [ ]
2./.2
3@ ®:3
41 @—@ 4
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Reducing to labeling problem

Theorem [GHK*17]: A code with (i,}) € Fg corrects an
(irreducible) error E C [n] x [n] iff E C K, , is a simply cycle with

0#(E):= Y (i)

(iJ)eE

e Correcting unbounded-length cycles requires d = ©(n)
[KLR17]

e Our observation: \Fg\ polynomial in n if you only correct
cycles of bounded length



Our Problem

Given n, e.

Find a labeling v : [n] x [n] — ' such that for all simple cycles E
in Kp,p of length at most e, we have y(E) # 0
Goal: minimize d.

e Handle small (constant) number of arbitrary erasures
e Implies existance of e-MR code



Our Results

(Asymptotic) bounds on |F¢| for e-MR codes on n x n codewords
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Previous results:
e < n® (implied in [GHJY14])
o > Q((n/e)e(¢/2)) for e < \/n (implied in [GHKT17])



Edge labeling for e = 4

Take {P;} and {Q;} each distinct and let
Y(i,j) = P;Qj € Fps = F§
Only need n distinct {P;},{Q;} C F{ so [F{| = O(n).

Y(E) = (i1, 1) + (i1, 42)
+v(i2, 1) +v(i2, J2)

@ (i)
:Pile1+Pile2 v
+Pi2Qj1+szQj2 ‘
= (Pi1 + sz)(le + sz) e @
£0



Edge labeling for e = 8

Take {P;} and {Q;} each distinct and let

1(i,J) = (PiQ;, P2Q;, PFQ)) € Py, 2 318"

@ (2) ai a» a3 by

V(E) = a% 3% a% by

@ @ a‘l* ag a§ b3
@ @ Where am= Py + P, and

m - QJm + Qjm+1'
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Edge labeling for e = 8

Take {P;} and {Q;} each distinct and let

1(i,J) = (PiQ;, P2Q;, PAQ)) € Py, 2 318"

@ @ dr d2 as b1

V(E) = a% 3% a% by
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Lower Bound for e = 4

Theorem: at least n different labels in F§ are required.
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Lower Bound for e = 4

Theorem: at least n different labels in F$ are required.

1 [ B! 1N1
2:>.2 2 [ W
Proof: If s @ and :e 3 have the same weight, then

1 o
1@ :3 is a simple cycle with zero weight.



Lower Bound for e < 12

Create a graph.
e Vertices: some collection of paths in K, ,

e Edges: p1 — po if p1 and p, together form a simple cycle of
length < e
e Connected paths must have different v weight
e |Fd| is at least the chromatic number
e Observation: a valid labeling induces a valid coloring

For e = 4 we build a clique of size n

1 [ ]
2 [ W]
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Lower Bound for e < 12

Create a graph.
e Vertices: some collection of paths in K, ,

e Edges: p1 — po if p1 and py together form a simple cycle of
length < e
e Connected paths must have different v weight
e |F{| is at least the chromatic number
e Observation: a valid labeling induces a valid coloring

For e = 6 we build a clique of size (n — 1)?




Lower Bound for e < 12

Create a graph.
e Vertices: some collection of paths in K, ,

e Edges: p1 — po if p1 and py together form a simple cycle of
length < e
e Connected paths must have different v weight
e |F{| is at least the chromatic number
e Observation: a valid labeling induces a valid coloring

For e = 10 we get chromatic number Q(n?)




Conclusions and Open Questions

We showed
o |FY| < n®/>7 for e < 12
e Tight fore =4,6
o |Fg| > n®for e =10

Open questions
e Tight bounds for all e

e Construct e-MR codes for other topologies



