The short side advantage in random matching markets

Linda Cai, Clayton Thomas
Princeton University

Preliminaries and Results

Goal: investigate the effect of competition on the average case behaviour of stable matching markets

- n men and $n+k$ women for $k \geq \mathbf{0}$
\triangleright Uniformly random, full length preference lists
- [AKL] found a startling difference between $k=0$ and $k \geq 1$ \triangleright We give a new, simpler proof
- Focus on women's average rank for their husbands
\triangleright Smaller is better

Women's average rank for their husbands		
n men, n women [Pit]	Men-proposing	Women-proposing
$n / \log n)$	$O(\log n)$	
n men, $n+1$ women [AKL]	$\Omega(n / \log n)$	$\Omega(n / \log n)$

Balanced Market

- Observation 1: In women-proposing deferred acceptance (WPDA), the sum of women's rank for their husbands equals the total number of proposals.
- Observation 2: In balanced market, WPDA terminates as soon as \boldsymbol{n} distinct men are proposed to.
- Observation 3: Therefore, the number of proposals made in WPDA is essentially a coupon collector random variable.
\triangleright If numbers from [n] are repeatedly drawn u.a.r., the number of draws needed for every element of [n] to occur gives the coupon collector random variable
\triangleright In a random market, each proposal women make is essentially uniform over the n men.
\triangleright The only difference between WPDA and a coupon collector is that women never propose to the same man twice.
(Formally, the coupon collector statistically dominates the number of proposals made.)
\triangleright The expected number of draws the coupon collector needs is $O(n \log n)$.
- Conclusions:
$\triangleright \ln W P D A, O(n \log n)$ proposals are made on average, so women's average rank for their husband is $O(\log n)$.
$\triangleright \ln W P D A$, men receive $O(\log n)$ proposals on average, so their rank for their wife is the minimum rank over these proposals, which is $\Omega(n / \log n)$.

Sharp Transition From $n \times n$ to $n+1 \times n$

- When $n+1$ women propose to n men, the random process terminates when some specific woman has proposed to every man.
- No woman wants to go unmatched, so they keep proposing to men and pushing each other down their

- Shift perspective to man-proposing deferred acceptance (MPDA).
- Investigate the woman-optimal outcome by finding the best strategic manipulation a woman can achieve.

Lemma ([IM])

A woman w^{*} has a stable partner of rank better than i if and only if w* * remains matched in man-proposing deferred acceptance when she truncates her list after rank i.

Unbalanced Market

- By the lemma, woman $w^{* \prime}$ s rank for her partner in woman-optimal outcome is the best (i.e. minimum) rank i at which she can truncate her list while still being matched in MPDA.
- Consider running MPDA with n men and $n+1$ women. Similar to the balanced market, MPDA terminates as soon as n distinct women have been proposed to.
- Now imagine w^{*} rejects all proposals she receives. Run MPDA until all women other than w^{*} receive a match.
\triangleright The number of proposals again follows a coupon-collector random variable, and we expect $O(n \log n)$ total proposals. \triangleright So w^{*} should get $O(\log n)$ total proposals.
- Thus, the expected best (minimum) rank of a proposal she receives is $\Omega(n / \log n)$. This is also the minimum rank where she can truncate her list and still receive a match, so in expectation she has no stable partners better than this rank.

Larger Imbalance

- Fix constant $\boldsymbol{\lambda}>\mathbf{0}$ and consider n men and $(\mathbf{1}+\lambda) n$ women.
- Women's average rank for their husbands is $\Omega(n)$.
\triangleright More specifically, $\Omega(n / \log (1+1 / \lambda))$.

Figure: [AKL] Women's average rank of husbands in WPDA and MPDA.

Citations

AKL Itai Ashlagi, Yash Kanoria, and Jacob D. Leshno. Unbalanced random matching markets: The stark effect of competition. Journal of Political Economy, 125(1):69-98, 2017.
IM Nicole Immorlica and Mohammad Mahdian. Marriage, honesty, and stability. SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 53-62, 2005.
Pit Boris Pittel. The average number of stable matchings. SIAM J. Discret. Math., 2(4):530-549, November 1989.7.

