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Abstract

Modern distributed storage systems employ Maximally Recoverable codes that aim to bal-
ance failure recovery capabilities with encoding/decoding efficiency tradeoffs. Recent works of
Gopalan et al [SODA 2017] and Kane et al [FOCS 2017] show that the alphabet size of grid-like
topologies of practical interest must be large, a feature that hampers decoding efficiency.

To bypass such shortcomings, in this work we initiate the study of a weaker version of
recoverability, where instead of being able to correct all correctable erasure patterns (as is the
case for maximal recoverability), we only require to correct all erasure patterns of bounded size.
The study of this notion reduces to a variant of a combinatorial problem studied in the literature,
which is interesting in its own right.

We study the alphabet size of codes withstanding all erasure patterns of small (constant) size.
We believe the questions we propose are relevant to both real storage systems and combinatorial
analysis, and merit further study.

1 Introduction

Modern distributed storage systems need to address the challenge of storing large amounts of
data, with small overhead, while providing reliable recovery in the face of failures. Unlike in com-
munication settings, if a failure occurs in a storage system, it is typically easy to detect where
it occurs (e.g., rack or data center failure are obvious to the system). Hence, recent trends
in practical systems adopt erasure coding schemes with fast encoding and decoding capabilities
[BHH13, HSX+12, SLR+14].

To maximize reliability, the codes employed require large fields, which is not a desirable feature
when performing many algebraic computations for encoding and decoding. In addition, such codes
need to be able to withstand correlated failures, since it is often the case that multiple machines
from the same location experience failures at the same time (e.g., data center failure). These design
choices result in parameter tradeoffs that have recently triggered active research in the coding theory
community [CHL07, DRWS11, Yek12, GHSY12, HSX+12, BB12, BHH13, TB14b, GHJY14, BK15,
LL15, HY16, GHK+17].

The notion of Maximally Recoverable (MR) code [CHL07, GHJY14] captures the design choices
that practical distributed storage systems face. Data can be stored as m× n matrices with entries
from a finite field F. Every row satisfies the same set of a parity constraints, and every column
satisfies the same set of b parity constraints. In addition, there are h global parity checks constraints,
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which could involve arbitrary entries from the matrix. This view of the code was recently defined
by Gopalan et al. [GHK+17] and denoted by the topology Tm×n(a, b, h). They also propose the
two-step design: (1) determine the topology of the code, by determining the support of the parity
check matrix and incorporating the knowledge of the correlated failures–this is possible since the
layout of the data is known in advance; (2) specify the finite field F = Fq and the coefficients
appearing in the parity check matrix. Further, to correct erasures, it is enough to solve a system
of linear equations over F. A code is said to be maximally recoverable if it corrects every erasure
pattern that can be corrected for some fixing of the coefficients in the given topology.

The study of maximally recoverable codes has revealed that even for basic topologies such
as T (1, 1, 1), maximal recoverability requires fields of super polynomial sizes [GHK+17, KLR17].
This is a topology of practical interest and fields of small size are highly desirable [PGM13]. Here
we focus on this particular topology, and propose a weaker notion of recoverability that allows
us to obtain explicit erasure schemes for polynomial size fields. Specifically, we focus on erasure
patterns with a bounded number of erasures. It turns out that the difficult patterns are the so-called
irreducible patterns. An irreducible erasure pattern for the T (1, 1, 1) topology is a set of non-trivial
erasures, in the sense that each such erasure is not the only erasure in some row/column parity
check equation, and hence in order to correct it one needs to solve a system of multiple linear
equations. In a general topology, iterative row-column decoders are first used to perform Gaussian
elimination locally (using only row/column equations), after which the decoder has to resolve non-
local (irreducible) erasures patterns. Correcting irreducible erasures is the most expensive part of
the decoding process, as it may involve many data disk reads, as well as communication between
multiple data centers.

We define an e-Maximally Recoverable (e-MR) code to be a code capable of correcting every cor-
rectable erasure pattern consisting of at most e erasures. We focus on e-MR codes for the T (1, 1, 1)
topology, with e = O(1). Withstanding a small number of erasures is of practical importance,
since at any given time the number of failures in a distributed storage system is typically small. In
addition, patterns with few erasures are often more important than those with a large number of
erasures [Yek17]. Distributed erasure schemes concerned with recovering from only one, or just a
constant number of erasures, have been studied in the active area of local reconstruction and regen-
eration, where the goal is designing codes with fast (local) decoding from the point of view of disk
reads and communication, respectively [IKOS04, DRWS11, GHSY12, SAP+13, HCL13, DGRS14,
KPLK14, WZ14, TB14a, FVY15, BE16, RPDV16, TBF16].

1.1 Our contributions

We initiate the study of e-Maximally Recoverable codes, and obtain explicit constructions, as well
as lower bounds, for codes withstanding erasure patterns of size up to e ≤ 12. Our results improve
upon the bounds implied by adapting previous works to our setting.

We restrict our attention to fields F of characteristic 2 (which is also desired in applications).
Let F2 = {0, 1} be the finite field on 2 elements.

[GHK+17] proves that understanding the field size for MR codes reduces to the following com-
binatorial problem: Let Km,n be a complete bipartite graph and γ : [m] × [n] → Fd2 be a labeling
of its edges, such that for any simple cycle C, the sum of the edge-labels in the cycle

∑
c∈C γ(c)

is non-zero. What is the smallest (asymptotically, as a function of m,n) value of d for which such
a labeling exists? For m = n, [GHK+17] shows that d = Ω((log n)2), and [KLR17] improves it to
d ≥ n/2 − 2. [KLR17] further provides an explicit construction for d = 3n. Our problem reduces
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to the following variant of the question:

Question 1.1. Given integer e > 0, when does there exist a labeling γ : [m]× [n]→ Fd2 of the edges
of a complete bipartite graph Km,n, such that for every simple cycle C of length at most e,∑

c∈C
γ(c) 6= 0?

Upper bounds [GHJY14] suggests labeling the mn edges with elements of an e-wise independent
set. A set S ⊆ F is said to be e-wise independent over F2 if every T ⊆ S with |T | ≤ e is
linearly independent over F2. They show that there exists a set S = {α1, α2, · · · , αmn}, where
αi ∈ F2dlogmnee/2 , such that S is e-wise independent over F2 (for completeness, we include the proof
in the appendix).

A typical setting in applications is m = n, in which case their results work over fields of size
O(ne). We show an explicit construction with O(ne/2−1) field size, albeit only for e ≤ 12.

Theorem 1.2. For e ≤ 12, there exists an e-MR code for T (1, 1, 1) over fields of size O(max{m,n}e/2−1).

We construct an explicit labeling for bounded-length cycles, and analyze it using properties of
Moore matrices, linear algebra and basic combinatorial properties of the kernels of such matrices.

Lower bounds A direct corollary of a result of [GHK+17] implies that a labeling γ : [n]×[n]→ Fd2
of cycles of length at most e must have d ≥ log

(
e
2

)
· log

(
n
e

)
+
(
e
2 − 1

)
log
(
1− e

4n

)
(for completeness,

we include the slightly modified proof in the appendix). We compare our bounds against this bound.
We obtain the following result.

Theorem 1.3. For e ≤ 12, every e-MR code for T (1, 1, 1) requires fields of size Ω(ndlog ee−1).

In particular, for e = 6 we improve from Ω(nlog 3) to Ω(n2), and for e = 10 we improve from
Ω(nlog 5) to Ω(n3).

The lower bound proof for unbounded cycle length in [KLR17] uses representation theory ar-
guments that appear difficult to adapt to bounded-length cycles. Our proof reduces to elementary
combinatorial arguments analyzing the chromatic number of a graph G, whose nodes represent
paths in Kn,n and the edges connect pairs of paths whose symmetric difference is a simple cycle of
bounded length.

We remark that neither our techniques for the upper bounds, nor the ones for the lower bounds
generalize to larger values of e, and hence new approaches are needed for further progress.

We believe the notion of bounded recoverability introduced here is well-motivated in practice,
and that obtaining tight asymptotics for the combinatorial Question 1.1 is difficult in general and
merits further study.

2 Preliminaries

As defined in [GHK+17], a code C({αkj }, {βki }, {γkij}) instantiating the grid-like topology Tm×n(a, b, h)
requires the following three sets of values:

1. Coefficients of the row constraints: {α(k)
j }j∈[n],k∈[a],
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2. Coefficients of the column constraints: {β(k)i }i∈[m],k∈[b],

3. Coefficients of the global constraints: {γ(k)ij }i∈[m],j∈[n],k∈[h].

The code symbols {xij}i∈[m],j∈[n] must satisfy the following parity check equations:

∀i ∈ [m], k ∈ [a],
∑n

j=1 α
(k)
j xij = 0, (1)

∀j ∈ [n], k ∈ [b],
∑m

i=1 β
(k)
i xij = 0, (2)

∀k ∈ [h],
∑m

i=1

∑n
j=1 γ

(k)
ij xij = 0. (3)

A failure pattern is specified by a subset of positions in the grid: E ⊆ [m] × [n]. Pattern E is
said to be correctable for a topology T if there exists a code instantiating T , such that the variables
{xij}(i,j)∈E can be recovered from the parity check equations.

A code instantiating the topology T is Maximally Recoverable (MR) if it corrects every cor-
rectable failure patterns of T . [GHK+17] and [KLR17] show that every MR code for Tm×n(a, b, h)
requires exponentially large field size if a, b, h ≥ 1. As this severely hampers the practicality of MR
codes, one naturally asks for more efficient ‘approximate’ recoverability.

To this end, we define e-Maximally Recoverable codes as follows.

Definition 2.1 (e-Maximally Recoverable Codes). A code C instantiating the topology Tm×n(a, b, h)
is e-Maximally Recoverable (e-MR) if C corrects every correctable pattern of size ≤ e.

This work initiates the study of optimal field size for e-MR codes and focuses on a few constant
values of e, and on the topology Tm×n(1, 1, 1). This is a topology with practical applicability
and has been well-studied in the recent literature [GHK+17, KLR17]. Moreover, lower bounds on
Tm×n(1, 1, 1) implies general lower bounds for Tn×n(1, 1, h), as described in the following theorem
implied in previous work, and whose proof we include in the appendix.

Theorem 2.2. (Implied in [GHK+17]) Let f : N×N→ N be a function such that any e-MR code
for Tn×n(1, 1, 1) requires field size f(n, e). Then any e-MR code for Tn×n(1, 1, h) requires field size
f(bn/hc , be/hc).

In Tm×n(1, 1, h), there is only one parity check equation for every row and column, and h general
parity equations. As mentioned before, one can perform an elimination process that iteratively
recovers an erasure that appears as the only erasure on its row or column. The process uses only
that row/column’s parity check equation, and is therefore computationally cheap. The remaining
set of erasures form an irreducible erasure pattern. We call an irreducible pattern of size ≤ e an
e-irreducible pattern.

As previously alluded to, we will use the following lemma as the starting point of our proofs.

Lemma 2.3. (Corollary to Lemma 15 and Corollary 17 from [GHK+17]) A correctable e-irreducible
pattern for T (1, 1, 1) corresponds to a simple cycle C of length ≤ e in Km,n. The pattern is
correctable by a particular instantiation C = C({γij}(i,j)∈[m]×[n]) iff

∑
(i,j)∈C γij 6= 0. (In particular,

we may assume that the remaining coefficients αj’s and βi’s of the topology in 1 have value 1.)

Throughout the paper we shall assume that all logs are base 2.
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3 Construction

In this section we prove Theorem 1.2. We assume m = n for simplicity of presentation.
Let F be a field of size 2dlogne, and ` > 1 an integer. For sets P = {P1, . . . , Pn} ⊆ F, and

Q = {Q1, . . . , Qn} ⊆ F, define the labeling γ`,P,Q of Kn,n by

γ(i, j) = γ`,P,Q(i, j) =
(
PiQj , P

2
i Qj , P

4
i Qj , . . . , P

2`−2

i Qj

)
∈ F`−1.

Note that since F ' (F2)
dlogne, we may view γ as a function γ : [n]× [n]→ (F2)

(`−1)dlogne.
Suppose P and Q are each sets of distinct values. We show that γ defines a labeling of Kn,n

that has no zero-cycles of length e = 2`, for e ≤ 12. Since the first `′−1 coordinates of γ correspond
to γ`′,P,Q, this will imply that γ(C) 6= 0 for all cycles of length 2`′ < 2` as well. This implies the
existence of an e-MR code for the topology Tn×n(1, 1, 1) over a field of size O(n`−1).

Consider a simple cycle in Kn,n of length e = 2` given by

C = i1 → j1 → i2 → j2 → . . .→ i` → j` → i1

We start with a lemma breaking this cycle into a union of 4-cycles. The value of γ on 4-cycles
has a simple description, which will allow us to write γ(C) as a product of a matrix and a vector
that we can analyze using basic linear algebra.

Lemma 3.1. Let γ be any labeling of Kn,n over a characteristic two field. Any simple cycle C
in Kn,n of length e = 2` can be decomposed into ` − 1 cycles C1, . . . , C`−1 of length 4 such that
γ(C) = γ(C1) + . . .+ γ(C`−1). Specifically, if C is given as above, we can take

Cm = i1 → jm → im+1 → jm+1 → i1

Proof. Induct on `. Note that the result holds trivially for ` = 2. Let ` > 2 and suppose that our
result holds for cycles of length `− 1. Thus, the cycle

C ′ = i1 → j1 → i2 → j2 → . . .→ i`−1 → j`−1 → i1

decomposes into ` − 2 cycles C1, . . . , C`−2. Let C`−1 = i1 → j`−1 → i` → j` → i1. Because we
work over fields of characteristic 2, we get γ(C) = γ(C ′) + γ(C`−1). Thus γ(C) = γ(C1) + . . . +
γ(C`−2) + γ(C`−1), as desired.

For k ∈ [`− 1], denote by γk(i, j) ∈ F the kth coordinate of γ(i, j), when identified as a vector
of length `− 1 over F. By lemma 3.1, we have

γk(C) =
`−1∑
m=1

γk(Cm)

=
`−1∑
m=1

γk(i1, jm) + γk(im+1, jm) + γk(im+1, jm+1) + γk(i1, jm+1)

=

`−1∑
m=1

P 2k

i1 Qjm + P 2k

im+1
Qjm + P 2k

im+1
Qjm+1 + P 2k

i1 Qjm+1

=
`−1∑
m=1

(Pi1 + Pim+1)2
k
(Qjm +Qjm+1)
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Let am = Pi1 + Pim+1 and let bm = Qjm +Qjm+1 for m = 1, . . . , `− 1. Define

M =


a1 a2 · · · a`−1
a21 a22 · · · a2`−1
a41 a42 · · · a4`−1
...

...
...

a2
`−2

1 a2
`−2

2 · · · a2
`−2

`−1

 , b =


b1
b2
...

b`−1.



so that we have
γ(C) = Mb.

A matrix M of the given form is sometimes called a Moore matrix.
The following pair of claims specify useful properties of {a1, . . . , a`−1} and {b1, . . . , b`−1}, and

follow easily from the distinctness of the Pi’s and Qj ’s.

Claim 3.2. The set {a1, . . . , a`−1} are distinct and nonzero.

Definition 3.3 (Zero adjacent sums). Consider a vector b = (b1, . . . , bN ). Define a zero adjacent
sum of b as a set of consecutive indices i, i + 1, . . . , j (for some 1 ≤ i ≤ j ≤ N) such that
bi + bi+1 + . . .+ bj = 0. We denote the set of indices {i, i+ 1, . . . , j} by [i, j].

We say [i, j] is a zero adjacent sum for a collection of vectors if it is a zero adjacent sum for
each vector in the collection.

Claim 3.4. The vector b = (b1, . . . , b`−1) has no zero adjacent sums.

Our goal is now to show that, given that the ais are distinct, every element of the kernel of M
has a zero adjacent sum. Thus, Mb 6= 0 for every b as given above.

The next lemma tells us that the kernel of M , i.e. the set of linear dependencies of the columns
of M , is determined by the linear dependencies of a1, a2, . . . , a`−1 (when we treat F as a vector
space over F2). This will allow us to work with a basis of the kernel of M whose coordinates are
all 0 or 1.

Lemma 3.5. Let T : (F2)
`−1 → F be given by T (b1, . . . , b`−1) = b1a1 + . . .+ b`−1a`−1. Then

kerM = spanF kerT

Proof. Because we work over a characteristic two field, b1a
2m
1 + . . . + b`−1a

2m

`−1 = (b1a1 + . . . +
b`−1a`−1)

2m . Thus each β ∈ kerT also satisfies Mβ = 0. Thus any linear combination over F of
elements of kerT is in kerM , i.e. we get kerM ⊇ spanF kerT .

To complete the proof, we will compare the dimensions of kerM and spanF kerT . Note that
dim kerT = dim spanF kerT , because a set of linearly independent vectors in (F2)

`−1 will still be
linearly independent in F`−1. Indeed, if β1, . . . , βk form a basis for kerT , then the matrix whose
columns are the first k entries of β1, . . . , βk will have nonzero determinant (over F or over F2).

Let m = rank T ≤ `−1, i.e. suppose there exist maximally m vectors among {a1, a2, · · · , a`−1}
which are linearly independent over F2. Suppose without loss of generality that {a1, a2, · · · , am} is
a maximal linearly independent (over F2) set of vectors among {a1, a2, · · · , a`−1} It is known (see
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Lemma 3.51 in [LN86]) that if {a1, a2, · · · , am} are linearly independent over F2, then the Moore
matrix 

a1 a2 · · · am
a21 a22 · · · a2m
a41 a42 · · · a4m
...

...
...

a2
m−1

1 a2
m−1

2 · · · a2
m−1

m


is invertible. In particular, the vectors

a1
a21
a41
...

a2
`−2

1

 ,


a2
a22
a42
...

a2
`−2

2

 , . . . ,


am
a2m
a4m
...

a2
`−2

m


are linearly independent over F.

Thus, there are at least m columns of M which are linearly independent over F. Thus rank M ≥
m = rank T , so dim kerM ≤ dim kerT = dim spanF kerT .

Thus kerM = spanF kerT , as desired.

Corollary 3.6. There exists a basis of kerM such that all of the entries of the vectors in the basis
are 0 or 1.

We note that a variant of the above lemma holds, with a similar proof, for any finite field Fq.
Let B be any basis for kerT . We will say that the weight of a vector is it’s number of nonzero

coordinates. Because {a1, . . . , a`−1} are distinct and nonzero, no nonzero vector in kerT has weight
1 or 2. Further, any sum of a subset of elements in B is also in kerT , so the sum of a subset of
elements in B must have weight > 2 as well.

Consider a basis B = {β1, . . . , βm} for kerT which is in reduced echelon form. In other words,
the matrix whose rows are β1, . . . , βm is in reduced row echelon form as given by (†).


− β1 −
− β2 −
− β3 −

...
− βd −

 =


1 ∗ · · · ∗ 0 ∗ ∗ 0 ∗ ∗ 0 ∗

1 ∗ · · · ∗ 0 ∗ ∗ 0 ∗
1 ∗ · · · ∗ 0 ∗

1 ∗ · · ·

0
. . .

 (†)

Note that given any basis, we can perform “row operations” to construct a basis of the form
given by (†). We will refer to the columns of (†) in which leading 1’s appear as pivot columns and
all other columns, where ∗’s are present, as non-pivot columns.

In this form, any sum of three or more basis vectors will automatically have weight at least
3. Thus the condition that all subset sums have weight at least three becomes equivalent to the
following two conditions on (†):
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• At least two non-pivot positions in every row are equal to 1.

• For every pair of rows, the non-pivot positions are not all equal.

We use the above two facts to bound how large dim kerM can possibly be:

Lemma 3.7. dim kerT ≤ `− 1− log `. In other words, rank M ≥ log `.

Proof. Let d = dim kerT be the number of basis vectors in (†). Let `−1 = d+t, so that t equals the
number of non-pivot columns of (†). There are 2t − t− 1 possible bitstrings of length t which have
weight at least 2. The starred positions of each row must correspond to distinct such bitstrings.
Thus 2t − t− 1 ≥ d. So we have `− 1 ≤ 2t − 1 and d ≤ `− 1− log `.

We are now ready to prove that under the conditions above we must have Mb 6= 0 for ` ≤ 6.
Theorem 1.2 will follow immediately from the observation that by Lemma 3.7 we have dim kerM ∈
{0, 1, 2} for ` ≤ 6, and by the next lemma dealing with these cases.

Lemma 3.8. If d = dim kerM ∈ {1, 2}, then b /∈ kerM .

Proof. Observe that if [i, j] is a zero adjacent sum for every element β ∈ B, then [i, j] is a zero
adjacent sum for every element of spanFB. By Lemma 3.4, this means b /∈ spanFB = kerM .

If d = 1, then kerM is spanned by a single binary vector β. It is easy to check that there must
exist i ≤ j such that [i, j] is a zero adjacent sum for β.

Now let d = 2 and suppose for the sake of contradiction that no [i, j] is a zero adjacent sum for
β1 and β2. By lemma 3.7, we need ` ≥ 6, so (†) has at least 5 columns. Consider the values of the
∗s in the first row between the first and second pivot. Because there can be no zero columns in (†),
each of these ∗s must be 1. But if there are more than 0 such ∗s, then [1, 2] forms a zero adjacent
sum for B.

Thus, (†) is of the form (
1 0 ∗ ∗
0 1 ∗ · · · ∗

)
Now we can apply a case analysis on the third (then fourth) columns of the above. If the third

column is

(
1
1

)
or

(
0
1

)
then there is a zero adjacent sum. Only the column

(
1
0

)
does not

create a zero adjacent sum among the first three columns of B. Finally, observe that adding any
fourth column to (

1 0 1 ∗ ∗
0 1 0 ∗ · · · ∗

)
will produce a zero adjacent sum.

Remark 3.9. It turns out that this result does not hold for larger values of e. For example, when
` = 7 and the kernel of M has dimension 3, we can have (†) take the form − β1 −

− β2 −
− β3 −

 =

 1 0 0 1 1 1
0 1 0 0 1 1
0 0 1 1 1 0

 ,
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which satisfies the property that no nonempty subset of the basis vectors is zero, yet does not
have any zero adjacent sums. It is easy to find a distinct set of elements {α1, . . . , α6} of F (for
instance, take F = F8) satisfying all of the linear dependencies given by {β1, β2, β3}. From there it
is easy to find an element b of their span without zero adjacent sums, and from there a set of distict
{P1, . . . , P7} such that bm = Pm + Pm+1.

4 Lower bounds

In this section we prove Theorem 1.3, thus showing our alphabet lower bounds for e-MR codes
with e ≤ 12, for the topology Tm×n(1, 1, 1). These bounds can also be extended to Tm×n(1, 1, h)
by Theorem 2.2. We will assume m = n for simplicity of presentation. Any lower bound with
n′ = min {m,n} for Tn′×n′(1, 1, h) trivially holds for Tm×n(1, 1, h).

4.1 High-level strategy

We adopt the same initial strategy used for e = 2n in [KLR17], which was also implicit in [GHK+17].
As in these works, the proof relies on the fact that we are labeling edges with elements in a field of
characteristic 2, and the proof easily extends to abelian groups.

Suppose γ : [n] × [n] → Fd2 is an edge labeling of the complete bipartite graph Kn,n such that
for any simple cycle C of length at most e,

∑
c∈C γ(c) 6= 0. One can obtain a lower bounds on |Fd2|

as a function of the chromatic number of the following graph. Let V be a collection of subsets of
edges in Kn,n. We take V to be a collection of paths, but discuss the possibility of taking V to
be a collection of matchings in the appendix. Let G be the graph with vertex set V and edges
between two paths p, p′ ∈ V whenever p ⊕ p′ is a simple cycle in Kn,n of length at most e. Here
the symmetric difference p ⊕ p′ = x{e|e ∈ p or e ∈ p′ but not both} is defined by treating p, p′ as
sets of edges. Denote by χ(G) the chromatic number of G, i.e. the minimum number of colors in
a proper coloring of G.

Lemma 4.1. |Fd2| = 2d ≥ χ(G), and thus d ≥ dlogχ(G)e .

Proof. Consider the following coloring σ : V → Fd2 of G: ∀p ∈ V, σ(p) =
∑

c∈p γ(c). This coloring
is indeed proper because ∀p, p′ ∈ V, σ(p) − σ(p′) =

∑
c∈p⊕p′ γ(c) is non-zero if p ⊕ p′ is a simple

cycle of length at most e. Therefore adjacent vertices in G receive distinct values from σ. It follows
that |Fd2| ≥ χ(G).

We will also use the following simple lemma.

Lemma 4.2. Let α(G) be the independence number of G, i.e. the size of a maximum independent

set of G. Then χ(G) ≥ |G|
α(G) .

Proof. A coloring of G is a partition of G into independent sets.

4.2 The cases e = 4, 6, 8

As a warm-up, we start with cycles of length 4 or 6.

Theorem 4.3. Let γ : [n]× [n]→ Fd2 be a labeling of the edges of the complete bipartite graph Kn,n

such that for any simple cycle C of length 4,
∑

c∈C γ(c) 6= 0. Then d ≥ dlog ne.

9



Proof. Fix s 6= t ∈ [n] and consider the set of paths V = {(s, a, t) | a ∈ [n]} . Clearly |V | = n and
any two paths in V form a simple cycle of length 4, so they should receive distinct weights.

Theorem 4.4. Let γ : [n]× [n]→ Fd2 be a labeling of the edges of the complete bipartite graph Kn,n

such that for any simple cycle C of length at most 6,
∑

c∈C γ(c) 6= 0. Then d ≥ 2dlog ne −O(1).

Proof. Fix s, t ∈ [n] and consider the set of paths

V = {(s, a, b, t) | a ∈ [n] \ {t} , b ∈ [n] \ {s}} .

Clearly |V | = (n−1)2. For any two different paths p1, p2 ∈ V , if they do not share any vertex other
than s and t they form a simple cycle of length 6. Otherwise, they share exactly one other vertex
and p1⊕ p2 is a simple cycle of length 4. Therefore any two paths in V receive distinct weights and
d ≥ dlog(n− 1)2e = 2dlog ne −O(1).

For the case e = 8 we simply notice that the Ω(n2) lower bound for e = 6 holds, since in this
case more cycles are required to have non-zero weights. We briefly comment why the above proof
strategy does not give us a better lower bound for this case.

Following the strategy, we can first build a graph G on a set of paths

V = {(v1, i1, j, i2, v2) | i1 6= i2 ∈ [n], j ∈ [n] \ {v1, v2}}

where v1, v2 ∈ [n] are two fixed vertices. If two paths share the same j vertex, then they are
connected to each other only when they share some additional vertex(i1 or i2). This shows that
those paths with some fixed j can be colored with at most O(n) colors, since the maximum degree
is O(n). Therefore the chromatic number χ(G) is at most O(n2), namely O(n) colors for each of
the (n− 2) choices of j. In fact we can easily construct a proper coloring of G using O(n2) colors.
Unfortunately that does not directly imply a zero-cycle free labeling either.

4.3 The cases e = 10, 12

The case e = 10 is the main result of this section. As before, for e = 12 the proof strategy does
not extend, and for this case we trivially have the Ω(n3) lower bound from e = 10. The following
combinatorial lemma will be useful in the proof.

Lemma 4.5. Let m,n ≥ 2 be integers. Suppose on a [m] × [n] grid we select m + n − 1 different
positions. Then there must exist a 6= a′ ∈ [m] and b 6= b′ ∈ [n] such that the following positions

(a, b), (a, b′), (a′, b)

are all selected.

Proof. We use induction on m+n. For the base case m+n = 4, the lemma is trivially true when we
select 3 positions out of a 2× 2 grid. Suppose the lemma is true for all (m,n) pairs with m+n ≤ k
and m,n ≥ 2. We will prove the lemma for m+ n = k + 1.

If m = 2 or n = 2 the proof follows immediately. Assume m,n > 2. Notice that the number
of selected positions m + n − 1 is more than the number of rows m. By the pigeonhole principle,
there is one row m0 on which there are t ≥ 2 selected positions (m0, n1), (m0, n2), · · · , (m0, nt). If
there is another selected position whose column falls into the set {n1, n2, · · · , nt} then the proof is

10



done. Otherwise, we consider the subgrid [m]\{m0}× [n]\{n1, n2, · · · , nt}. This subgrid has m−1
rows and n− t columns. Notice that in order to fit in the remaining m+ n− 1− t positions, n− t
should be at least 2 in this case. Now that (m− 1) + (n− t) = k− t ≤ k and m− 1 ≥ 2, n− t ≥ 2,
and we still have m+ n− 1− t ≥ (m− 1) + (n− t)− 1 selected positions remaining, the induction
hypothesis will guarantee the existence of a, b, a′, b′ in the subgrid.

The following theorem is the main result of this section. It gives a Ω(n3) lower bound on the
field size required to correct every cycle of length up to 10, which slightly improves the previous
bound Ω(nlog 5).

Theorem 4.6. Let γ : [n]× [n]→ Fd2 be a labeling of the edges of the complete bipartite graph Kn,n

such that for any simple cycle C of length at most 10,
∑

c∈C γ(c) 6= 0. Then d ≥ 3dlog ne −O(1).

Proof. Let n = 2m+ 1. Consider the following set of paths with length 5:

V = {(1, i1, j1, i2, j2, 1) | i1, j2 ∈ {2, · · · ,m+ 1} , i2, j1 ∈{m+ 2, · · · , 2m+ 1}}.

We build a graph G on V as mentioned before Lemma 4.1: we connect by an edge the vertices
corresponding to two paths p and p′ if p⊕p′ is a simple cycle. Notice that whenever two paths form
a simple cycle, its length is at most 10. This graph can be divided into interconnecting cliques in
the following way. For i1, j2 ∈ {2, · · · ,m+ 1}, let

Vi1,j2 = {(1, i1, j1, i2, j2, 1) | j1, i2 ∈ {m+ 2, · · · , 2m+ 1}}.

be the set of paths obtained from fixing the 2nd and 5th vertex to be i1 and j2, respectively. The
induced subgraph of G on Vi1,j2 is a clique, because the symmetric difference between any two
paths in Vi1,j2 is always a simple cycle of length 4 or 6, as mentioned in the proof of Theorem 4.4.
Therefore, we divide G into m2 disjoint cliques (indexed by i1, j2), each of size m2.

Now we move on to explore how these cliques are connected to each other. Let Vi1,j2 6= Vi′1,j′2
be two different cliques, and

p = (1, i1, j1, i2, j2, 1) ∈ Vi1,j2 ,
p′ =

(
1, i′1, j

′
1, i
′
2, j
′
2, 1
)
∈ Vi′1,j′2

be two paths. We break the analysis into 3 cases.

1. i1 6= i′1 and j2 6= j′2. In this case p and p′ are connected if and only if j1 6= j′1 and i2 6= i′2.

2. i1 = i′1 and j2 6= j′2. In this case p and p′ are not connected if and only if j1 6= j′1 and i2 = i′2.

3. i1 6= i′1 and j2 = j′2. In this case p and p′ are not connected if and only if j1 = j′1 and i2 6= i′2.

Intuitively this is a well-connected graph, and in fact we have an upper bound on the independence
number of G:

α(G) < 2m− 1.

To prove the claim, assume there is an independent set I and |I| ≥ 2m − 1. Since each Vi1,j2 is
a clique, we can pick at most one path out of each Vi1,j2 to form I. By Lemma 4.5 there exists

11



i0, j0, i
′
0 6= i0, j

′
0 6= j0 ∈ {2, · · · ,m+ 1} such that I contains one path from each of the following 3

cliques: Vi0,j0 , Vi0,j′0 and Vi′0,j0 . Suppose the involving 3 paths are

p1 = (1, i0, j1, i1, j0, 1) ∈ I ∩ Vi0,j0 ,
p2 =

(
1, i′0, j2, i2, j0, 1

)
∈ I ∩ Vi′0,j0 ,

p3 =
(
1, i0, j3, i3, j

′
0, 1
)
∈ I ∩ Vi0,j′0 .

From the discussion above we know it has to be the case that

j2 = j1 and i2 6= i1, j3 6= j1 and i3 = i1.

However, this implies j2 6= j3 and i2 6= i3. Combining i0 6= i′0 and j0 6= j′0 shows that p2 and p3 are
indeed connected. So this contradicts with the fact that I is an independent set.

By Lemma 4.2 we have a thing

χ(G) ≥ |G|
α(G)

>
m4

2m− 1
≥ 1

2
m3,

and by Lemma 4.1 we have

d ≥ dlogχ(G)e ≥
⌈

log

(
1

2
m3

)⌉
= 3dlog ne −O(1).
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5 Appendix

5.1 Missing proof from Section 1.1

Lemma 5.1 (Theorem 13 of [GHJY14]). There exists a 2h-wise independent set of size n in
F2dlogneh.

Proof. Let β1, β2, · · · , βn ∈ F2dlogne be distinct elements of the field. Let

αi =
(
βi, β

3
i , · · · , β2h−1i

)
∈ F2dlogneh .

Suppose for the sake of contradiction that S = {α1, α2, · · · , αn} is not 2h-wise independent. Then
there exists {λi}i∈[2h] 6= {0}, λi ∈ {0, 1} such that

∑2h
i=1 λiαi = 0. It follows that

∑
i∈[2h] λiβ

2k+1
i =

0 for all k = 0, . . . , h − 1. Since λ2i = λi for all i and since we are working over a characteristic 2

field, each equation
∑

i∈[2h] λiβ
2k+1
i = 0 for k = 0, . . . , h − 1 also implies

∑
i∈[2h] λiβ

2a·(2k+1)
i = 0,

for all a ≥ 1. In particular, we obtain that there is a non-trivial solution to the system M ·
(λ1β1, λ2β2, . . . , λ2hβ2h)t = 0, where M is the Vandermonde matrix
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
1 1 · · · 1
β1 β2 · · · β2h
...

...
. . .

...

β2h−11 β2h−12 · · · β2h−12h

 .

This is a contradiction, since the matrix M has full rank.

Proof of Theorem 2.2. The proof is mostly adapted from [GHK+17] (Corollary 18, Lemma 19 and
Lemma 20). Let

C = C
(
{αi}i∈[n] , {βi}i∈[n] ,

{
γ
(k)
ij

}
i,j∈[n],k∈[h]

)
be a e-MR code instantiating the topology Tn×n(1, 1, h). By Lemma 15 of [GHK+17] we can set
αi’s and βi’s to be 1. Now partition the set [n] into h nearly equal sets S1, S2, · · · , Sh each of size

at least bn/hc. For t ∈ [h], let Ct denote the code specified by {αi}i∈St
, {βi}i∈St

and
{
γ
(1)
ij

}
i,j∈St

instantiating the topology Tbn/hc×bn/hc(1, 1, 1). We prove the following claim.
Claim: There exists t ∈ [h] such that Ct is be/hc-MR for the topology Tbn/hc×bn/hc(1, 1, 1).
Assume the contrary, then we can find at least one simple cycle Ct from each subgrid St × St

such that |Ct| ≤ be/hc and is not correctable for Ct. In other words

∀t ∈ [h],
∑

(ij)∈Ct

γ
(1)
ij = 0.

Consider the erasure pattern E = ∪tCt. E has size at most e, and by lemma 16 of [GHK+17] it
is correctable by Tn×n(1, 1, h) (since ` + r = e and c = h). Therefore C corrects E by definition,
which means the following system of linear equations has a trivial kernel:

∀k ∈ [h],

h∑
t=1

∑
(ij)∈Ct

γ
(k)
ij xij = 0.

From the row and the column parity check equations we know that xij ’s carry the same value xt
within a simple cycle Ct. Plugging this observation into the equation gives

h∑
t=1

xtΓt = 0

where Γt =
(∑

(ij)∈Ct
γ
(k)
ij

)
k∈[h]

is an h-dimensional vector. Now it is clear that the system has a

trivial kernel if and only if Γ1,Γ2, · · · ,Γh are linearly independent. However, by construction of
Ct’s the first coordinate of Γt is always 0. We arrive at a contradiction.

Since the claim is true, any e-MR code for Tn×n(1, 1, h) requires field size f(bn/hc , be/hc).

Theorem 5.2 (Adaptation of Theorem 5, [GHK+17]). Let γ : [n] × [n] → Fd2 be a labeling of
the edges of the complete bipartite graph Kn,n such that for any simple cycle C of length at most
e ≤ 2

√
n, ∑

c∈C
γ(c) 6= 0.

Then we have d ≥
(
e
2 − 1

)
log
(
1− e

4n

)
+ log

(
e
2

)
· log

(
n
e

)
.
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Proof. For v1, v2 ∈ Kn,n and integer k ≤
√
n, let Pk(v1, v2) be the set of simple paths from v1 to v2

with length k. Now we build a graph G on Pk(v1, v2) as mentioned in Lemma 4.1, and we want to
upper bound the independence number of G. Let I ⊆ Pk(v1, v2) be any independent set of G, i.e.
a subset of paths such that

∀p, p′ ∈ I, p⊕ p′ is not a simple cycle (of length at most 2k).

We want to show that |I| ≤ klog k+1nk−log k−1.
Let f(k) = klog k+1nk−log k−1 and we will prove by induction on k. Since f(1) = 1 the proposition

holds for k = 1. Now assume it holds for lengths up to k − 1, and we consider the case of k.
Pick an arbitrary path p0 ∈ I. For any other path p ∈ I, p should at least shares one common

vertex with p0 (other than v1, v2), since otherwise p0 ⊕ p would be a simple cycle. That is, there
exists i, j ∈ [k − 1] such that p(i + 1) = p0(j + 1) where p(i + 1) is the (i + 1)-th vertex of p and
p0(j + 1) is the (j + 1)-th vertex of p0. Consider the following sets

Sij = {p ∈ I \ {p0} | p(i+ 1) = p0(j + 1)} .

Notice that
⋃
i,j∈[k−1] Sij = I \ {p0}, which means∑

i,j∈[k−1]

|Sij | ≥ |I \ {p0} | = |I| − 1.

So there must exist i0, j0 ∈ [k − 1] such that

|Si0j0 | ≥
|I| − 1

(k − 1)2
.

We focus on paths in Si0j0 . These paths share the same (i0 + 1)-th vertex p0(j0 + 1), which we
will denote by v3. Such paths can be considered as two parts, the head from v1 to v3 of length i0,
and the tail from v3 to v2 of length k − i0. Without loss of generality we can assume i0 ≤ k/2.
Otherwise we just interchange the roles of head and tail.

There are at most ni0−1 possible choices of heads in Si0j0 . Notice that if two paths have the
same head, their symmetric difference is not a simple cycle if and only if the symmetric difference
of their tail is not a simple cycle. Therefore the number of paths sharing a fixed head is upper
bounded by

f(k − i0) = (k − i0)log(k−i0)+1nk−i0−log(k−i0)−1.

Thus we have an upper bound on |Si0j0 |:

|Si0j0 | ≤ ni0−1f(k − i0)
= ni0−1(k − i0)log(k−i0)+1nk−i0−log(k−i0)−1

= (k − i0)log(k−i0)+1nk−log(k−i0)−2,

which in turn gives an upper bound on I:

|I| ≤ (k − 1)2|Si0j0 |+ 1

≤ (k − 1)2(k − i0)log(k−i0)+1nk−log(k−i0)−2 + 1

≤ k2(k − i0)log(k−i0)+1nk−log(k−i0)−2.

16



Let t = k − i0, then k/2 ≤ t ≤ k since 0 ≤ i ≤ k/2. The RHS becomes

k2t1+log tnk−2−log t.

In order to show that the RHS is at most f(k), we consider the ratio

k2t1+log tnk−2−log t

k1+log knk−1−log k
=

t1+log t

klog k−1nlog t−log k+1

=
(kt)log t−log k+1

nlog t−log k+1

=

(
kt

n

)log( 2t
k )

≤ 1.

The last line is because kt ≤ k2 ≤ n and 2t ≥ k.
Now we have proved that α(G) ≤ f(k). By Lemma 4.2

χ(G) ≥ |G|
α(G)

≥ |Pk(v1, v2)|
f(k)

≥ (n− k/2)k−1

k1+log knk−1−log k
.

Applying Lemma 4.1 and taking e = 2k gives d ≥ dlogχ(G)e ≥ (k−1)·log
(
1− k

2n

)
+log k·log

(
n
2k

)
=(

e
2 − 1

)
log
(
1− e

4n

)
+ log

(
e
2

)
· log

(
n
e

)
.

5.2 Alternative Lower Bound Strategies

As an aside, we mention why the methods of [KLR17] may not produce better lower bounds for
e ≤ 12. In particular, we show their methods will not improve the lower bound when e = 8, the
first non-tight case.

Given σ ∈ Sn a permutation, define M(σ) = {(i, σ(i))|i ∈ [n]} ⊆ E(Kn,n) to be the matching
corresponding to σ. For a given e, define a graph Ge which has vertex set {M(σ)|σ ∈ Sn} and
has M(σ) connected to to M(σ′) when M(σ)⊕M(σ′) is a simple cycle. As discussed in [KLR17],
Claim 1.5, we have M(σ)⊕M(σ′) a simple cycle in Kn,n if and only if σ(σ′)−1 is a cycle in Sn. The
length of the cycle M(σ) ⊕M(σ′) in Kn,n is equal to twice the length of the cycle σ(σ′)−1 ∈ Sn.
Thus, we define the edges of Ge by connecting M(σ) to M(σ′) if and only if σ(σ′)−1 is a cycle of
length ≤ e/2. Then by Lemma 4.1, we know 2d is at least the chromatic number χ(Ge).

Let e/2 be even and consider the edges present in Ge which do not exist in Ge−2. All the
new edges will correspond to (e/2)-cycles, which are odd permutations, and thus connect even
permutations to odd permutations. Thus, we can construct a coloring of Ge out of a coloring for
Ge−2 by creating two new colors, ceven and codd, for every color c used for Ge−2. Thus χ(Ge) ≤
2χ(Ge−2) when e/2 is even. In other words, this strategy will not help us attain better bounds
when e/2 is even (other than those for e− 2). In particular, our labeling γ for e = 6 constructs a
coloring of G3, so χ(G3) ≤ n2. Thus χ(G4) ≤ 2n2, so this method cannot improve our analysis in
the first non-tight case, e = 8.
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