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Abstract

A recent breakthrough of Ashlagi, Kanoria, and Leshno [AKL17] found that imbalance in
the number of agents on either side of a random matching market has a profound effect on
the expected characteristics of the market. Specifically, across all stable matchings, the “long
side” (i.e. the side with a greater number of agents) receives significantly worse matches in
expectation than the short side. If matchings are found via the classic one-side proposing
deferred acceptance algorithm, this indicates that the difference between the proposing and the
receiving side is essentially unimportant compared to the difference between the long and the
short side.

We provide new intuition and a new proof for preliminary results in the direction of [AKL17],
namely calculating the expected rank that an agent on the long side has for their optimal stable
match.

1 Definitions and Preliminaries

We start with the basic definitions. A matching market is a collection M of “men” and W of
“women”, where each man m ∈ M has a ranking over women in W, represented as list ordered
from most preferred to least preferred, and vice versa. Lists may be partial, and agents included
on the list of some a ∈M∪W are called the acceptable partners of a. We denote the collection of
preference lists for all agents by P , and we say that an agent a prefers x to y if x is ranked before
y on the list of a, or if x is an acceptable partner of a but y is not. We also describe the fact that
x is an acceptable partner of a by saying that a prefers x to ∅.

A matching is a set of vertex disjoint edges in the bipartite graph M∪W, where (m,w) is an
edge if and only if m is acceptable to w and w is acceptable to m. We denote a matching as a
function µ :M∪W →M∪W ∪ {∅}, where µ(i) is the matched partner of agent i, or µ(i) = ∅ if
agent i is unmatched.

For a set of preferences P and any matching µ, a man/woman pair (m,w) is called blocking
if we simultaneously have 1) w prefers m to µ(w), and 2) m prefers w to µ(m). A matching µ is
stable for a set of preferences P if no unmatched man/woman pair is blocking for P . A pair (m,w)
is called stable for P if µ(m) = w in some stable matching, and m is called a stable partner of w
(and vice-versa).

The classic method of finding some stable matching is the one-side-proposing deferred accep-
tance.

Theorem 1.1. Algorithm 1 always computes a stable matching µ0. Moreover, this is the man-
optimal stable outcome, in that every man is matched in µ0 to his best stable partner. In particular,
the resulting matching is independent of the execution order.
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Algorithm 1 MPDA: Men-proposing deferred acceptance

Let U =M be the set of unmatched men
Let µ be the all empty matching
while U 6= ∅ and some m ∈ U has not proposed to every woman on his list do

Pick such a m (in any order)
m “proposes” to their highest-ranked woman w which they have not yet proposed to
if w prefers m to µ(w) then

If µ(w) 6= ∅, add µ(w) to U
Set µ(w) = m, remove m from U

We also need the following classical fact:

Theorem 1.2 (Rural Hospital Theorem). For any set of preferences, the set of unmatched agents
is the same across every stable outcome.

2 The Balanced Case

Consider a random matching market P with n men and n women, where each of the n men have
uniformly random rankings over the n women, and each of the n women have uniformly random
rankings over the n men. Note that each man ranks each woman and vice-versa. We refer to such
a random market as balanced, in that there are there are the same number of men and women. Let
MPDA(P ) denote the man-optimal stable outcome realized by running MPDA. By the rank that
a man m has for a woman w, we mean the index of w on the preference list of m, ranging from 1
to n, and by the average rank that each man gets in a matching µ, we simply mean the sum over
all men m of the rank m has for µ(m), divided by n. We say that a man m receives a partner w
better than rank i when w appears in index at most i on m’s list.

It is a classical exercise to show that the expectation of the average rank that each man gets in
MPDA(P ) is O(log n). The key insight is that, for random balanced matching markets, MPDA(P )
essentially behaves like a “coupon collector” random variable. More precisely,

• The sum of the ranks that the men have for their wives in MPDA is exactly the total number
of proposals made.

• Define a “coupon collector” random variable Y via the following random process: at each
step, a number from [n] is drawn uniformly at random, and Y is the number of steps required
for every number in [n] to be drawn at least once.

• For a balanced matching market (or for any where the number of men is at most the number
of women) MPDA terminates as soon as n distinct women are proposed to.

• Thus, the total number of proposals made in MPDA is essentially the random variable Y
(more precisely, Y statistically dominates the number of proposals made, because in MPDA
men will never propose to women who they have already proposed to)

Thus, by analyzing the expectation of the coupon collector random variable Y , we get the
following claim:

Proposition 2.1. Let P be a random matching market with n men and (at least) n women. Then
the expected average rank the men have for their wives is O(log n).

Of course, the above claim would also hold for women if we used woman-proposing deferred
acceptance. On the other hand, in MPDA, since the total number of proposals is O(n log n),
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on average each women only receives O(log n) proposals. A woman’s rank for her partner in the
man-optimal outcome is the minimum rank over all proposals she recieves in MPDA. In a random
matching market, these rankings are essentially uniformly distributed over [n]. Thus women’s
expected average ranking of their partners should be Ω( n

logn). Thus, in balanced random maching
markets, on average agents recieve dramatically different outcomes (measured by their rank for
their partner) when they are on the proposing side verses the recieving side.

3 Unbalanced Markets and the Effect of Competition

We now turn to study “unbalanced” random matching markets, i.e. ones in which one side (say,
the women) has strictly more agents than the other side. For the sake of simplicity, for this paper
we will assume there are n men and exactly n+ 1 women.

Surprisingly, this very slight imbalance (which one might expect to be negligible as n → ∞)
leads to a large qualitative difference in the set of stable outcomes. The authors of [AKL17] show
that, for any ε > 0 and n large enough, the expected average rank that a woman has for her best
stable partner is (1 − ε)n/ log n. Moreover, they show that, with high probability, the fraction
of agents with multiple stable partners goes to 0 as n → ∞. Informally, they conclude that the
effect of competition is that the “short side” essentially picks their matches and the “long side” is
essentially picked (regardless of who is actually doing the proposing). Contrast this to the balanced
case, where the optimal match of women is O(log n) in expectation, and where it can be shown
that the fraction of agents with multiple stable partners goes to 1 as n goes to infinity [Pit89].

The proof in [AKL17] is a careful and detailed probabilistic analysis of a certain algorithm for
converting the man-optimal stable matching into the woman-optimal stable matching. While this
technique is extremely powerful, and reveals deep properties about the expected behavior of the
set of stable matchings, it is a bit unintuitive and hard to absorb.

In this section, we adapt the classical “coupon collector” arguments to prove a preliminary
result about the average quality of stable outcomes in unbalanced random matching markets. More
specifically, we show that, in the woman-optimal matching for a random market with n men and
n+ 1 women, the expected value of the rank of the best stable of partner of any woman is Ω

(
n

logn

)
.

Up to constants, this matches the expected rank the women would receive in man-proposing deferred
acceptance.

Given that the stark difference between the balanced and unbalanced case is counterintuitive at
first, let’s first get some intuition for why we might expect the unbalanced case to be any different
at all. Consider woman-proposing deferred acceptance with n + 1 women and n men. In the
balanced case, this roughly corresponded to a coupon collector random variable, where every man
had to be proposed to once. But now, because some woman must go unmatched, the algorithm
will only terminate once some woman has proposed to every man. This is a very different random
process, and one can imagine it must run for a much longer time, forcing the proposing women to
be matched to much worse partners than in the balanced case. Unfortunately, this random process
is fairly difficult to analyze1, so we turn to a coupon-collector type approach instead.

3.1 Expected Rank

The first key to our proof is the following claim, which is based on the concept of “list truncation” as
in in [IM05]. Although this claim was essentially given in [IM05], we prove it here for completeness.

1 For instance, to get a useful analysis, we’d need to keep track of which woman is currently proposing, which
men she has already proposed to, and how likely each man is to accept a new proposal.
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Claim 3.1. Fix a woman w∗. For any i ∈ [n], let Pi denote the set of preferences resulting from w∗

after truncating her list at place i (i.e. marking men ranked worse than i “unacceptable”). Then
w∗ has a stable partner of rank better than i if and only if w∗ is matched in MPDA(Pi).

Proof. (⇒) Suppose for contradiction that w∗ has a stable partner of rank better than i, yet w∗

is not matched in MPDA(Pi). Let µ0 = MPDA(P ) and µ′ = MPDA(Pi), and let µ is a stable
matching (for preferences P ) where w receives a partner better than rank i. Observe that µ must
be stable for preferences Pi, because any pair blocking for Pi must be blocking for preferences
P . Thus, the set of matched agents in µ would be identical to that of µ′, by the rural hospital
theorem 1.2. In particular, w∗ should be matched in µ′, a contradiction.

(⇐) Now, suppose w∗ is matched in µ′ = MPDA(Pi). We know µ′(w∗) is ranked by w∗ better
than i, so it suffices to prove that µ′ is stable for preferences P . Certainly, µ′ is stable for preferences
Pi. Why might a matching, stable for Pi, not be stable for preferences P? The only way is if the
blocking pair (m,w) for P is such that w = w∗ and w∗ truncated m off her preference list. But w∗

only accepts proposals from men ranked better than i, and she got a match, so she can’t possibly
be matched below m. Thus µ′ is stable for preferences P .

With the above lemma, the proof sketch is as follows:

• By claim 3.1, woman w∗’s rank for her partner in woman-optimal outcome is the best (i.e.
minimum) rank i at which she can truncate her list while still being matched in MPDA(Pi).

• Consider running man-proposing deferred acceptance on a random matching market with n
men and n+ 1 women. Similar to the balanced random market, we observe that n < n+ 1,
so MPDA terminates as soon as n distinct women have accepted a proposal.

• Now imagine w∗ rejects all proposals she receives. We run MPDA until all women other
than w∗ recieve a match. The number of proposals again follows a coupon-collector random
variable, and we expect O(n log n) total proposals. In particular, w∗ should get O(log n) total
proposals before the algorithm terminates.

• The rank w∗ has for each man who proposes to her is (essentially) a uniformly distributed
number in [n]. Thus, the expected best (minimum) rank of a proposal she receives is Ω

(
n

logn

)
,

which is also the minimum rank where she can truncate her list and still recieve a match.
Thus, in expectation she has no stable partners better than this rank.

Below we make this intuition formal.

Theorem 3.2. In a random matching market with n men and n + 1 women, for any women w∗,

the expected rank of w∗’s best stable partner is Ω
(

n
logn

)
.

Proof. Let P be a random matching market for n men and n + 1 women, however let one of the
women w∗ submit an empty list of acceptable men (so w∗ rejects all men) while everyone else
submits uniformly random full length preference lists. Let Y be denote the number of proposals w∗

receive before MPDA(P ) terminates. In order to bound Y , we define a similar random variable
Y . Consider a “coupon collector with a dud” random process, where in each round a number in
[n + 1] is drawn uniformly at random, and the process terminates when every number in [n] has
been drawn at least once (the number n + 1 is the “dud coupon” which does not count towards
the termination condition). Let Y denote the number of times the number n+ 1 is drawn in such
a process.

Claim 3.3. Y statistically dominates Y .
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Proof. MPDA(P ) can be formally thought of as the following process (which is just running
MPDA with the “principle of deferred decisions” used for the men’s preferences and with w∗

rejecting all proposals):

1. At the beginning of the process, each women w draws a preference list over all men
uniformly at random.

2. In each step, an unmatched man m is chosen uniformly at random. Then m draws a
woman w uniformly at random from the list of women m hasn’t proposed to yet, and m
proposes to w.

3. If w 6= w∗ and w was previously matched, w rejects her less preferred proposer. If w = w∗,
w rejects m.

4. The process terminates if all women other than w∗ have been proposed to.

Consider a modified deferred acceptance process MPDA′, which is identical to the above except
item 2 above is replaced by

2′. In each step, an unmatched man m is chosen uniformly at random. m draws a woman w
uniformly at random (regardless of whether m has already proposed to w) and propose
to w.

Let Y ′ denote the number of proposals w∗ receive before MPDA′ terminates. Observe that,
ignoring which man is making each proposal, MPDA′ is exactly the same as “coupon collector
with dud” process described above. Thus, Y ′ is identically distributed to Y .

Observe also that the distribution of proposals of MPDA(P ) is identical to the distribution
of proposals of MPDA′, filtering out all “repeated proposals” where a man proposes to a woman
for a second (or third, etc.) time. (Conditioned on a proposal not being ignored, each unmatched
man is uniformly selected, and so is each woman he has not proposed to). Thus Y is identically
distributed to the filtered number of proposal to w∗ in process MPDA′. For every event in the
MPDA′ random process, Y ′ ≥ Y . Thus, Y ′ = Y statistically dominates Y .

Claim 3.4. Y ≤ 3 log n with probability at least 1/2

Proof. Call the number n+ 1 the “dud”, and the numbers in [n] the “coupons” . For i = 1, . . . , n,
let ti be the step where the ith distinct coupon is drawn for the first time. Denote by Xi the
number of draws in (ti−1, ti]. Denote by Yi the number of proposals to the dud in (ti−1, ti], so that
Y =

∑n
i=1 Yi. Observe that in step ti, a new number in [n] is drawn, thus the dud is never drawn

in step ti. In interval (ti−1, ti), we know that either an old coupon (that has already been drawn
before) is drawn, or the dud is drawn. Thus the dud is drawn with probability 1

i in each step in
interval (ti−1, ti). So Yi can be viewed as the sum over Xi − 1 i.i.d Bernoulli random variables Qij

with probability qi = 1
i . We thus get

E [Yi] = E
xi∼Xi

xi−1∑
j=1

E [Qij ]

 = E [(Xi − 1) · qi] = qi · E [Xi − 1] = qi ·
(

1

pi
− 1

)
=

1

n− i+ 1
.
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Furthermore, each Xi is a geometric random variable with success probability pi = n−i+1
n+1 . Thus,

letting Hn denote the nth harmonic number,

E [Y ] =
n∑

i=1

E [Yi] =
n∑

i=1

1

n− i+ 1
= Hn.

And by Markov’s inequality, we get

P [Y ≤ 3 log n] ≥ P [Y ≤ 2Hn] ≥ 1/2

Proof of theorem 3.2. Let X be the set of proposals w∗ receive in MPDA if she rejects every
men. Denote by min(X) the minimum rank of men in X for w∗. We have

E [min(X)] ≥ P [|X| ≤ 3 log n] · E
[
min(X)

∣∣∣|X| ≤ 3 log n
]

≥ 1

2
· E
[
min(X)

∣∣∣|X| = 3 log n
]

Now w∗’s rank for men in X can be generated as follows: Consider men in X proposing in a
sequential order. In each step w∗ gives the current proposing men m a rank which has not yet
been assigned to a man uniformly at random (i.e. for the ith man, there are n − i + 1 ranks still
available). While the ranks of the men are not exactly i.i.d. uniform random variables on [n], we
show next that the expectation of min(X) behaves almost as if they are.

Assume after the men in X, a new man m proposes to w∗. Denote the probability that m’s
rank is the minimum out of |X| + 1 men as Pmin(m). Since the ranks are each uniform over [n],
each rank is equally likely to be the minimum, i.e. Pmin(m) = 1

|X|+1 . At the same time, we know
that

Pmin(m) =
∑
k≥1

P [min(X) = k] · P [rank of m < min(X)]

=
∑
k≥1

P [min(X) = k] · k − 1

n− |X|
=

E [min(X)]− 1

n− |X|
.

Thus

E [min(X)] =
n− |X|
|X|+ 1

+ 1 =
n+ 1

|X|+ 1
.

We conclude that

E [min(X)] ≥ E
[
min(X)

∣∣∣|X| = 3 log n
]
/2 =

n+ 1

2 · (3 log n+ 1)
= Ω

(
n

log n

)
Finally, observe that min(X) is exactly the lowest index i where woman w∗ can truncate her

list and still be matched in MPDA(Pi). Thus, by claim 3.1, min(X) is exactly the rank that w∗

has for her best stable partner.
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