
You Can’t Handle the Lie:
Next-Hop Verification in BGP

Clay Thomas
claytont@cs.princeton.edu

Gavriel Hirsch
gbhirsch@cs.princeton.edu

Abstract
This paper presents a new protocol called Next-Hop Ver-
ification, which reduces the set of contexts in which au-
tonomous systems are incentivized to lie while participat-
ing in BGP. The protocol works by sharing information
about BGP path announcements between different AS’s,
using the existing structure of the network, and check-
ing those path announcements against the true flow of
traffic in the data plane. We discuss the advantages and
disadvantages of this new approach, and compare its ef-
fectiveness to that of previously considered verification
techniques, focusing on cases where next-hop verification
provably eliminates the incentives to lie in BGP.

1 Introduction

1.1 Background and Previous Work
Routing on the Internet involves many distinct Au-
tonomous Systems (AS’s), each with its own data sources,
destinations, and links; as well as its own preferences over
how traffic is routed. An AS may prefer that the traffic it
sends and receives be sent over the shortest path, in or-
der to decrease latency; or it may prefer to send its traffic
through specific other AS’s for economic incentives, due
to contracts about routing costs; or it may prefer to avoid
certain other AS’s, if it is concerned about malicious ac-
tivity. In the other direction, an AS may also prefer to at-
tract or deter traffic from certain other AS’s, again for eco-
nomic incentives or perhaps even to spy on certain traffic.

These AS’s typically use the Border Gateway Protocol
(BGP) to announce routes to neighbors and learn routes
from neighbors in the control plane, and to then choose
how to actually route traffic in the data plane. However,
there is no way for BGP to enforce the requirement that
an AS route traffic in a way that matches its announce-
ments. Thus, due to all of the various (often conflicting)
preferences that AS’s have over how traffic is routed, there
are incentives to lie in the control plane about what an AS
will actually do in the data plane, in order to influence
how other AS’s behave.

To counteract this, verification protocols have been de-
veloped which run alongside or alter BGP in order to pre-

vent lying. Unfortunately, directly verifying the routes a
packet takes in the data plane requires cryptographic sig-
natures on every packet, as in [PS03]. This huge over-
head makes full data-plane verification impractical. In-
stead, previous work has searched for control plane pro-
tocols which still manage to prevent or discourage certain
types of lies.

Much work has been done on analyzing BGP control
plane verification protocols through game-theoretic mod-
els. In [LSZ08], the authors show that in a general set of
contexts, a form of verification called path verification1

ensures that no AS or group of AS’s can get strictly pre-
ferred routes for its traffic by telling lies.

However, lying can potentially give other benefits be-
yond getting better routes for your own traffic. In
[GHJ+08], the authors analyze BGP games in which
agent’s utility may depend on attracting traffic from other
AS’s. In this scenario, even using path verification does
not suffice to disincentivize lying. They introduce an-
other form of verification called loop verification, which is
simpler but weaker, and describe conditions under which
path or loop verification do disincentivize lying. However,
they admit that many of these conditions are unreasonably
strong, such as requiring that AS’s follow an “all or noth-
ing” export rule.

Another proposal for detecting BGP lies—or more gen-
erally BGP faults—is NetReview [HARD09]. When us-
ing NetReview, AS’s record and publish all their BGP
messages in tamper-evident logs, and other AS’s are able
to audit these logs to check whether there are any faults.
However, actually detecting the faults requires regularly
auditing the entirety of every AS’s logs which is nontriv-
ial. In addition, NetReview is purely in the control plane,
so additional work needs to be done if we are concerned
that AS’s may route in the data plane differently than what
they announced in the control plane. Next-hop verifica-
tion addresses both of these concerns by being relatively
simpler, and by incorporating information from the data
plane.

1 In the original paper they refer to it as route verification.

1

1.2 Our contributions

Given the difficulty of preventing lies in BGP, we would
at least like to be able to detect lies when they are told2.
The initial observation of this work is that there will al-
ways be at least one AS that knows what each other AS
is truly doing, namely the one that directly receives traffic
from it in the data plane. As a result, if AS’s are willing
to collaborate then there is information that can be used
to detect the existence of lies, without requiring full data-
plane verification. Put another way, we can just monitor
each AS, rather than every packet. Based on this obser-
vation, we present a new protocol called next-hop verifi-
cation and show that it effectively detects lies in certain
scenarios.

As with previous practical verification protocols, next-
hop verification protocol runs in the control plane. How-
ever, it also uses information sampled from the data plane
in order to aid verification. Specifically, it requires AS’s
to keep track of which of its neighbors forward traffic to-
wards it for different destinations. Given that agents have
this information, next-hop verification gives an effective
way for agents to distribute and answer queries about the
true data plane paths used by other AS’s. The distribution
of queries uses the existing structure of the network and
requires no encryption.

We find that assuming full compliance, next-hop ver-
ification allows us to catch lies assuming there are is no
traffic attraction among preferences. In this regard, next-
hop verification is similar in effectiveness to path veri-
fication. In the context where preferences involve traf-
fic attraction, we are able to significantly weaken the as-
sumptions which [GHJ+08] needed on the preferences of
AS’s. In this sense, next-hop verification is sometimes
more powerful than path verification (although there do
exist cases where path verification will prevent a lie that
next-hop verification cannot catch). Additionally, we find
that next-hop verification is strictly more powerful than
loop verification, that is, every lying situation detected by
loop verification will be detected by next-hop verification
In general, we attempt to embark on a similar program
to that of [GHJ+08], experimenting with various settings
and seeing where next-hop verification leads to good in-
centive properties.

2 Model Details

2.1 BGP framework

We model the network of AS’s as an undirected graph,
with a node for each AS and an edge between any two
AS’s that can directly communicate with each other with-

2 For the purposes of our discussion, we assume that AS’s always
want to avoid being caught lying, so detecting lies is the same as disin-
centivizing those lies.

out going through a third AS. We assume that the graph is
a single connected component, so any AS can in theory in-
teract with any other AS. As is standard in the literature,
we assume there is a unique destination AS d, because
routing to different destination (prefixes) is done indepen-
dently in BGP.

In the BGP framework, AS’s can announce the exis-
tence or removal of paths to each other. Each AS has
an import policy that determines how it responds to path
announcements from neighboring AS’s. Specifically, the
import policy determines whether and how the AS will
update its route, when it hears new announcements. Fur-
thermore, each AS has an export policy that determines
whether it will announce its current path to a neighbor
(or, if the agent is being manipulative, it could announce a
path different from the one it is actually using). These im-
port and export policies are the action space of each agent
AS. Finally, each AS has some preferences over how the
actual traffic in the network flows, regarding both what
route it gets and how other AS’s route through it. Each
AS will choose a strategy, namely their import and export
policies, based on these preferences.

More precisely, there are two types of actions available
to each agent: installing certain routes in their forward-
ing table, and announcing paths to their neighbors. Let
N(i) denote the neighbors of AS i in the BGP graph. For-
mally, we could model the import policy of a node i as a
function impi : PathN(i)→ Path from the (possibly empty)
collection of routes currently announced as available to i,
to a (possibly empty) path to use for forwarding traffic3.
We assume that AS’s have a utility function v : Path→ R
which models their preference among the different paths
to the destination. A non-strategic import policy would
simply select the favorite path available to the AS at a
given point in time.

The export policy could be modeled as a function expi :
Path×N(i) → Path from the current path i uses and a
given neighbor of i to a path to announce to the neigh-
bor (or the empty path if i does not wish to export). For
a BGP compliant AS, the export policy simply amounts
to choosing whether to export the path the AS currently
uses (that is, we have expi(j, p) = p or expi(j, p) = []).
In realistic settings an AS may prefer not to announce its
path to all neighbors, the most famous example of this
being the Gao-Rexford framework [GR01], in which for
example customers will not route traffic between two of
their providers. The export policy may more generally be
determined by the traffic attraction and repulsion prefer-
ences of the AS. For a manipulative, non-BGP compliant
AS, a much richer set of export policies is available: the
AS can lie arbitrarily, announcing paths that it doesn’t use
or that don’t even exist.

3 We actually allow a manipulative, non-BGP compliant agent to
have a strictly larger set of available actions: the agent may forward
down multiple routes

2

Definition 1. Suppose a BGP network G has reached a
stable equilibrium. We say that an AS m is lying if the it
exports a route other than that which it is using. We say
that an AS is honest if it is not lying.

We assume that the collection of strategies leads the
network to converge to a stable solution. In general con-
texts, convergence becomes very hard to reason about.
Because of this complexity and the fact that in practice
convergence typically does occur (at least for small lo-
cal subgraphs), in this paper we choose to focus on what
happens after convergence. We show that if the network
were to converge to a state that depends on lies, then
in some scenarios we would then be able to catch the
lies and shame the liar. As a result, it should not be
beneficial to lie in a way that leads to that state. See
[LSZ08, GR01, GSW02, GSW99] for more formal details
about proving different types of convergence and what as-
sumptions are necessary.

2.2 Verification
In this section, we give an overview of some previously
considered verification protocols. These will be our com-
parison points for next-hop verification.

Definition 2. In a network using path verification it is
impossible for AS’s to announce that they are using paths
which were not already announced to them.

Some extensions to BGP, such as S-BGP, can enforce
path verification using cryptography. However, it re-
quires additional overhead as well as universal adoption
[LGS13], because every route communicated in the con-
trol plane must be cryptographically signed by every AS
along that route.

Definition 3. In a network using loop verification no AS
will use an export policy that involves not sending a path
to a neighbor specifically because that neighbor is already
in the path. In addition, if an AS u ever sees a path con-
taining uR, where u did not actually announce route R, it
will “raise an alarm”, with the idea that the offender (the
first node which announced a false path) can be publicly
shamed.

Note that if agents’ export policies never sent paths to
neighbors who are already in them, then loop verification
could not be done. The name loop verification comes from
the “routing loop” formed by announcing a path contain-
ing u to AS u.

2.3 Behavioral assumptions
When agents get utility from attracting traffic, stronger
verification protocols are needed to disincentivize lying.
In [GHJ+08], the authors consider the following classes
of preferences which depend on more than just an AS’s
own path.

Definition 4. An AS m cares about volume attraction if
its utility can depend on the set of AS’s that route through
m.

An AS m cares about generic attraction if its utility can
depend on the set of AS’s that route through m AND on
the routes these AS’s take to get to m.

Volume attraction can reflect truly malicious situations
such as spying, where the manipulative agent wants to
view packets for some nefarious reason. Issues like this
may occasionally have huge consequences for the global
routing behavior of the internet, for example, the 2010
China Telecom BGP hijacking could’ve potentially served
this function [DS18]. It could also simply reflect an eco-
nomic incentive such as getting paid for routing more traf-
fic.

With preferences for generic attraction, an AS m may
have incentives to affect how other agents route through
m. For example, a provider may want a customer to route
directly through it in order to charge that customer more.

We briefly consider one assumption on the path prefer-
ences of AS’s as well:

Definition 5. An AS n has a next hop import policy if its
choice of which path to use is a function of only the first
AS along the path (i.e. the next-hop).

3 Next-Hop Verification Protocol
We now define next-hop verification. This protocol
is run on a BGP network after convergence has al-
ready occurred. Nodes communicate along existing links
in the network, storing and sending next-hop queries.
We assume that AS’s can “raise the alarm”, similar to
[GHJ+08], which refers to alerting others that something
is going wrong with the particular query. For our results
section, we will assume that when the alarm is raised, the
offending agent will be caught (for example, via the col-
laboration of the NANOG mailing list to detect the prob-
lem, as suggested in [GHJ+08]), and its lie will be disin-
centivized.

Each node maintains a queue of queries which it needs
to answer. A query is denoted Qd(a,b), representing a
node announcing that a uses b as its next-hop in its path
to destination d.

Whenever n acts, it runs the function RESPOND, de-
tailed in Figure 2, on every query Qd(a,b) waiting in its
queue, then waits for more queries.

After n has sent some traffic to d, it can start query-
ing about its own route. It does this by adding the query
Qd(a,b) to its own queue, for every hop (a,b) on n’s path
to the destination d.

We have sketched an implementation of next-hop
verification in Haskell. Visit our repository4 to

4 Located at github.com/ClathomasPrime/Cs561Proj/ under the bgp-
fact-check/ directory.

3

https://github.com/ClathomasPrime/Cs561Proj/tree/master/bgp-fact-check/

check out the code. Of particular interest is the
file src/FackCheck.hs, which implements the above
RESPOND in the functions ‘processMessage’ and
‘factCheckAnswerQuery’.

For a motivating example of next-hop verification, con-
sider the network given in Figure 1 (a common exam-
ple in discussions of BGP incentives [LSZ08, GHJ+08]).
Here, m is able to get a preferred path to the destination
by falsely announcing the path md to node 2. However,
nodes 1 and d, which are both one hop away from 2, can
tell that this announcement is not legitimate: d knows that
m does not route directly to d, and 1 knows that m routes
directly to 1 instead of d. If d, 1, and 2 are all compliantly
running next-hop verification, 2 will ask both other nodes
the query Qd(m,d) and both will “raise the alarm”.

Figure 1: NonexistentPath

We note the following important considerations:

• In the case where n is responding to a query Qd(a,n),
it needs to check whether a actually forwards traffic
directly to n for destination d, which must be done
in the data plane. Accordingly, each AS should keep
a flag for each other (neighboring AS) × (dest AS)
pair, representing whether the first AS ever directly
sends n traffic destined for the second AS. In prac-
tice, maintaining the accuracy of this information in
the face of the dynamic nature of routing would be
difficult. For example, AS’s need to reset the flags
after certain lengths of time without seeing any traf-
fic. However, we leave the details to future work.

• We require nodes to actually send traffic before ask-
ing next-hop queries. This forces the potential ma-
nipulator to actually use at least some data-plane
paths, in the hopes that it will use a false path. In-
tuitively, this will leave evidence of the lie, in the
sense that certain AS’s will know what is actually
happening. More generally, we assume that enough
traffic is sent such that all data-plane paths are actu-
ally observed, and that the absence of traffic means
that a given route is not being used. This is a strong
assumption on the traffic in the network, but in very
stable networks (and for important destinations) this
assumption is not too unreasonable.

• If a manipulator is lying about the next-hop it is per-
sonally using, it may intentionally send occasional

1: Denote the acting AS by n
2: function RESPOND(Qd(a,b))
3: if n previously responded to Qd(a,b) then
4: return
5: if n = a then
6: if n does not use b as its next hop for d then
7: “raise the alarm”
8: return
9: if n = b then

10: if a does not use n as its next hop for d then
11: “raise the alarm”
12: else
13: send the query Qd(a,b) to all neighbors
14: else (i.e. n 6= a,b)
15: if a uses n as its next hop for d then
16: “raise the alarm”
17: else
18: send the query Qd(a,b) to all neighbors

Figure 2: Next-hop verification pseudocode

traffic towards its announced next-hop, while send-
ing the bulk of its traffic down the route that it gen-
uinely prefers. We take this strategy into consider-
ation, and our theorems hold even allowing for this.
However, it means that if n = b and a forwards traffic
directly to b, then n cannot guarantee that a doesn’t
forward traffic elsewhere as well. Instead n must for-
ward the query on to its neighbors in line 13 of RE-
SPOND. Furthermore, it means we cannot rely on
line 11 in any of our theorems, because if a is the ma-
nipulator it may send a small amount of “fake traffic”
to b in order to “cover its tracks”.

Figure 3: FalsePositive

Figure 3, considered in [GHJ+08] under the name
InconsistentPolicy, gives another example of next-hop
verification, and also illustrates the final bullet point
above. In this network, m wants to carry traffic from 1, but
must lie to 1 in order for it to choose m as its next-hop. In
order to obscure this lie, m can try to send a small amount
of its traffic directly to d, while still using its favored path
through 2 for the bulk of its traffic. Running next-hop
verification, 1 will ask the query Qd(m,d) to d. Node d

4

will indeed observe a small amount of traffic coming from
m, so it cannot raise the alarm. But it will forward the
query to node 2, which will then “raise the alarm”. Note
that, assuming d announces the path md to m, neither path
verification nor loop verification can prevent this strategic
manipulation. So this is a case where next-hop verifica-
tion gives us a strict advantage over existing verification
protocols.

4 Results

Our first result formalizes the statement “in a network
without traffic attraction, next-hop verification will catch
all incentivized lies”. See figure 1 for a demonstration of
this theorem.

Theorem 1. Let G be a stable outcome of a BGP instance
without traffic attraction. Suppose there is a single manip-
ulator m, and all other nodes honestly participate in BGP
and in next-hop verification. If m lies in order to get a
better path to d, then next-hop verification will catch that
lie and shame m.

Proof. Assume m lies by announces a hop (a,b) to v,
where (a,c) is actually in a route from m to d for some
c 6= b. (Note that m could send traffic to both b and c if
m = a.)

If there exists a path P from v to c that does not contain
m, then because all nodes along P are participating in the
next-hop protocol, the node v will ask the query Qd(a,b),
which will travel along path P until c can “raise the
alarm” in line 16 of RESPOND. So it is sufficient to show
that such a path always exists.

Suppose for contradiction that every path from v to c in-
cludes m.5 We will show that this is not compatible with
the hypothesis that m got a better path to d by sdlying.
The route from m to d which includes (a,c) must not have
loops, so there exists a path P1 from c to d not containing
m. If there were a path P2 from v to d which did not con-
tain m, then the path P2P1 (the concatenation of P2 and P1)
is from v to c and would not contain m. Thus, every route
from v to d includes m.

Because all non-m nodes are honest, m must get v to
change its route to d in order to get a different path by ly-
ing to v. (More technically, there must exists a choice of
v which picks a different path). However, v’s route can-
not effect m’s route to d, because every route from v to
d includes m, so no route of v nor any consequence of
v’s route can change the set of paths available to m. This
contradicts the assumption that m got a better path by ly-
ing.

5This would be a problem because m could drop next-hop queries so
that its lie wouldn’t be caught

The next result shows that next-hop verification is at
least as effective as loop verification in disincentivizing
lying in some cases:

Theorem 2. Let G be a stable outcome of a BGP instance
with generic traffic attraction. Suppose there is a single
manipulator m, and all other nodes honestly participate
in BGP and in next-hop verification. Suppose that loop
verification, run on the stabilized network, would catch
m’s lie. Then m will be caught by next-hop verification on
the stabilized network.

Proof. Suppose loop verification would detect a false path
P originally announced by m. Specifically, this means that
P contains a subpath uR, where R is not actually used by
u, and that some node q adjacent to u installs a route con-
taining P (and can announce that path to u to detect the
false loop).

Let (a,b) be the first hop along the path uR which is not
used in the data plane. When next-hop verification is run,
node q will ask the query Qd(a,b). The query will start
at u, and travel down the path R. Note that P must be a
simple path starting with m, so R cannot contain m. Thus,
eventually node a will receive the query Qd(a,b), and will
“raise the alarm” in line 7 of RESPOND.

Note that an analogue of the above theorem for path
verification does not hold6. In practice, it is reasonable
to run loop verification alongside next-hop verification,
because loop verification is very lightweight7. Combined
with the extensive discussion in [GHJ+08] about the capa-
bilities of loop verification, the previous result gives us a
few different situations in which next-hop verification will
catch all incentivized lies. The rest of this section is ded-
icated to weakening the requirements for those incentive-
compatibility properties to hold.

The following theorem says that next-hop verification
will still catch lies in networks with volume attraction.
Indeed, unlike [GHJ+08] we do not need to make any
assumptions on preferences or behavior (other than as-
suming volume attraction) to get this positive result. See
figure 3 for an example of this theorem.

Theorem 3. Let G be a stable outcome of a BGP instance
with traffic volume attraction. Suppose there is a single
manipulator m, and all other nodes honestly participate
in BGP and in next-hop verification. If m lies in order to
attract traffic from some node u, then next-hop verification
will catch that lie and shame m.

6 For an example, consider figure 4, altered by removing the link
between nodes m and l. The exact same lying strategy is still available to
m under next-hop verification, but this is not possible if path verification
is used.

7 It even makes the above proof more efficient: the query doesn’t
have to travel down the path R, it can be immediately answered at u.

5

Proof. Suppose m did manage to attract more traffic from
a victim u by announcing a false path L. Because u routes
through m and no node other than m lied, u must install a
route containing L. (More technically, there must exists a
choice of u which installs routes L, or else m did not attract
traffic by lying.) Assume that L contains a hop (a,b), yet
data plane hop (a,c) is actually used for c 6= b.

Let P denotes the path u would have otherwise taken to
d. Note that by our assumption and the definition of vol-
ume attraction, m /∈P. Now, in the data plane m uses some
route Q containing hop (a,c). Let R be the subpath of Q
which routes from c to d, and note that m /∈ R because Q
is a simple path. Thus, by eliminating any possible loops
from PR>, the concatenation of P with R> (the reverse
of path R), we get a simple path from u to c which does
not include m. Because all non-m nodes are actively and
honestly running next-hop, the query Qd(a,b) will travel
from u to c and c will “raise the alarm” in line 16 of RE-
SPOND.

However, we are not able to extend this result to generic
attraction. Indeed, consider the example given by Fig-
ure 4, taken directly from [GHJ+08]. In this network, the
manipulator m wants nodes n and c to use m as their next
hop for destination d, for example, because of economic
considerations. The AS’s who know what m is doing in
the data plane are separated from the AS’s m is lying to.
Those victim agents cannot communicate with d and l
without going through m, which can just throw their next-
hop queries away to avoid being caught.

Figure 4: Bowtie

We note also that next-hop verification is able to catch
the manipulator in many of the other examples from
[GHJ+08] (indeed, next-hop verification works for all ex-
amples except Bowtie and DisputedPath). This may hint
at many more theorems that we were unable to prove for
this project. For example, we make the following conjec-
ture:

Conjecture 1. Let G be a stable outcome of a BGP in-
stance with generic traffic attraction. Suppose there is a
single manipulator m, and all other nodes honestly partic-
ipate in BGP and in next-hop verification. Furthermore,
assume all nodes use next-hop import policy in ranking
their paths. If m lies in order to attract traffic from some
node u, then next-hop verification will catch that lie and
shame m.

Intuitively, this should eliminate examples like Bowtie,
where the victim node c was tricked into routing directly
through m because its import policy was not next-hop.

5 Possible future directions
We showed in the previous section that next-hop verifica-
tion has the potential to provide some major benefits for
catching lies in BGP, and thus reducing or even eliminat-
ing ASs’ incentives to do so. However, there is still some
future work that should be done before it is used in prac-
tice.

One important question is how effective the protocol
can be in partial deployment or participation. In our the-
orems we assumed that there was only one malicious AS
and that all others actively participated fully in helping
to catch lies. However in practice, it may be the case
that some AS’s have not deployed the necessary software
and/or hardware for participation. It may also be the case
that some AS’s choose not to participate or to only share
a limited subset of the information they have, even if they
are not themselves malicious, lying agents. Partial de-
ployment and participation would still be somewhat valu-
able though; certainly lies can still be detected if we get
lucky and all the right agents participate. However, a for-
mal analysis with strong theorems is probably difficult in
the face of such partial deployment.

A related and interesting line of investigation would be
into the actual incentives of mutual participation in next-
hop verification. There are examples where a non-lying
agent actually gets a preferred outcome through the lies of
a manipulator, AND that agent’s participation is needed to
catch the manipulator with next-hop verification. In prac-
tice, perhaps this “fact-checking” could be written into
customer-provider contract agreements, e.g. providers
helping customers keep track of other providers. In the
setting of Gao-Rexford networks [GR01], it may be pos-
sible to prove strong results, such as participation in next-
hop with your customers never being harmful.

Perhaps the biggest practical problem with our proto-
col is the way it “floods” the AS graph with next-hop
queries. In practice, the very minimum that would need to
be added is a “time to live” field on the next-hop queries,
which would prevent them from exploding over the entire
AS graph.

The clear alternative to this “query flooding” is to sim-
ply encrypt the query and send it to the AS’s who can
answer it, in the same way that one would send normal
traffic. The burden of such encryption would not be very
heavy, and the resulting protocol would be more practical
for checking on hops which are far away from you in the
AS graph. However, an important aspect of our protocol is
the ability for AS’s that are involved in the actual route but
not the fake route to raise the alarm. In addition, it seems
ideal for a fact-checking protocol to make use of local in-

6

formation, like path verification (with local cryptographic
signatures) or loop verification. Indeed, in examples like
Figure 1, the next-hop query needs to travel only one hop
before being answered. In today’s very dense AS graph,
that may often be the case, and with more refined knowl-
edge of the nearby structure of the graph, an AS may be
able to intelligently route its next-hop queries to get effi-
cient answers. We view our protocol, and the theorems
surrounding it, as a step towards a more refined next-hop
verification capable of meeting these criteria.

6 Conclusion

In this paper we have proposed the design of Next-Hop
Verification, a protocol for catching BGP lies by using
information from the control plane along with minimal
information sampled from the data plane, and by having
the AS’s collaborate with each other to detect these lies.
We also analyzed the theoretical capabilities of the proto-
col, and showed that in many circumstances it is capable
of catching lies that loop verification and path verifica-
tion cannot catch. We believe that Next-Hop Verification’s
approach of sharing informationand cross-checking with
the data plane is a valuable one, and that the protocol is
a valuable step in working toward more secure control-
plane communication.

References
[DS18] Chris Demchak and Yuval Shavitt. Chi-

naâĂŹs maxim âĂŞ leave no access point
unexploited: The hidden story of china tele-
comâĂŹs bgp hijacking. Military Cyber Af-
fairs, 3, 06 2018.

[GHJ+08] Sharon Goldberg, Shai Halevi, Aaron D. Jag-
gard, Vijay Ramachandran, and Rebecca N.
Wright. Rationality and traffic attraction: In-
centives for honest path announcements in
bgp. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication,
SIGCOMM ’08, pages 267–278, New York,
NY, USA, 2008. ACM.

[GR01] Lixin Gao and Jennifer Rexford. Stable in-
ternet routing without global coordination.
IEEE/ACM Trans. Netw., 9(6):681–692, De-
cember 2001.

[GSW99] Timothy G. Griffin, F. Bruce Shepherd, and
Gordon Wilfong. Policy disputes in path-
vector protocols. In Proceedings of the
Seventh Annual International Conference on
Network Protocols, ICNP ’99. IEEE, 1999.

[GSW02] Timothy G. Griffin, F. Bruce Shepherd, and
Gordon Wilfong. The stable paths problem
and interdomain routing. IEEE/ACM Trans.
Netw., 10(2):232–243, April 2002.

[HARD09] Andreas Haeberlen, Ioannis Avramopoulos,
Jennifer Rexford, and Peter Druschel. Ne-
treview: Detecting when interdomain rout-
ing goes wrong. In Proceedings of the
6th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI’09,
pages 437–452, Berkeley, CA, USA, 2009.
USENIX Association.

[LGS13] Robert Lychev, Sharon Goldberg, and
Michael Schapira. BGP security in partial
deployment: Is the juice worth the squeeze?
CoRR, abs/1307.2690, 2013.

[LSZ08] Hagay Levin, Michael Schapira, and Aviv
Zohar. Interdomain routing and games. In
Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, STOC
’08, pages 57–66, New York, NY, USA,
2008. ACM.

[PS03] Venkata N. Padmanabhan and Daniel R. Si-
mon. Secure traceroute to detect faulty
or malicious routing. SIGCOMM Comput.
Commun. Rev., 33(1):77–82, January 2003.

7

	Introduction
	Background and Previous Work
	Our contributions

	Model Details
	BGP framework
	Verification
	Behavioral assumptions

	Next-Hop Verification Protocol
	Results
	Possible future directions
	Conclusion

