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Abstract

The (generalized) Johnson graph is given by slices of the hypercube, and is important for under-
standing probabilistically checkable proof systems and hardness of approximation. Characterizing the
expansion of the Johnson Graph recently served as an important conceptual stepping stone to proving
the 2-to-1 games conjecture. Here, we summarize the proof technique used, with a focus on simplicity
and clarity of presentation.

The 2-to-1 games conjecture (now theorem) is an immensely important fact in computer science, especially
in hardness of approximation. This note mostly ignores this broader context, but here we point out the
relevant papers. In [DKK+16] (backed up by a substantial technical report in [DKK+18]), a plan-of-attack
on the 2-to-1 games conjecture was formulated, and a combinatorial hypothesis was put forward which
would imply the 2-to-1 conjecture. This combinatorial hypothesis seemed related to the small set expansion
of the so-called Grassmann graph, and [BKS18] made a simple observation which showed that answering the
combinatorial hypothesis was actually equivalent to understanding the small set expansion of the Grassmann
graph (the “degree 2 shortcode graph” is another equivalent viewpoint). Classifying the expansion in the
Grassmann graph seemed very hard, so first a conceptually related graph called the Johnson graph was
studied in [KMMS18]. Finally, [KMS18] proved the necessary result on expansion of the Grassmann graph,
completing the proof of the 2-to-1 conjecture.

This note summarizes [KMMS18], giving results which are technically disjoint from those needed to prove
the 2-to-1 games conjecture, but which motivated and clarified how the proof of the 2-to-1 games conjecture
should go. We also rely heavily on results from [DKK+18], adapted to statements about the Johnson graph
instead of the Grassmann.

1 Introduction

Definition 1.1. For t < ` < k, the (generalized) Johnson graph J(k, `, t) has nodes
(

[k]
`

)
(i.e. subsets of

{1, . . . , k} of size exactly `) and edges between nodes A and B if and only if |A ∩B| = t.

Typically, we think of the case when k � ` and t = `/2.
The central question we are concerned with is this: What are the (small-density) vertex sets of J(k, `, t)

with small edge-expansion? There’s a fairly immediate class of easy examples: for any R ⊆ [k] with
|R| = r = O(1), define

SR :=

{
A ∈

(
[k]

`

)∣∣∣R ⊆ A}
Observe that the density of this set SR/

(
k
`

)
is approximately (`/k)r, a quantity that goes to zero as k →∞.

However, the expansion of SR is approximately 1 − e−(t/`)r, which is bounded away from 1. Thus SR is
a small, poorly-expanding set of vertices in J(k, `, t). It will turn out that this is in some sense the only
example of a small non-expanding set of vertices.

We measure correlation with SR via the following definition:

Definition 1.2. For any f :
(

[k]
i

)
→ R and J ⊆ [k], |J | < i, define:

µ(f) = E
|I|=i

[f(I)] µJ(f) = E
I⊇J,|I|=i

[f(I)]
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If F is the indicator function of a set of vertices S, then µ(F ) is called the density of S.

A set of vertices is called pseudorandom when it does not correlate highly with any SR, i.e. if it does not
become significantly more dense when we restrict our attention to supersets of R:

Definition 1.3. For any r ≤ `, ε > 0, a set of vertices S of J(k, `, t) is called (r, ε)-pseudorandom when for
every R ⊆ [k] with |R| ≤ r, we have

|µR(S)− µ(S)| ≤ ε

The main theorem states that pseudorandom sets are good (edge) expanders in the Johnson graph. Con-
versely to this theorem, we see that the only way to be a bad expander in J(k, `, t) is to non-pseudorandom,
i.e. to be similar to some set SR.

Theorem 1.4 (Main Theorem (Qualitative Version)). For all η, δ ∈ (0, 1/2) and `, t ∈ N, there exists r ∈ N,
ε > 0, and k � ` such that if S is a set of vertices in J(k, `, t) which has µ(S) = δ and is (r, ε)-pseudorandom,
then Φ(S) ≥ 1− η.

Theorem 1.5 (Main Theorem (Quantitative Version)). Fix `, t ∈ N and δ ∈ (0, 1/2). If k > exp(poly(`)) poly(1/δ),
then if S with µ(S) = δ is (r, ε) pseudorandom in J(k, `, t), then

Φ(S) ≥ 1− (t/`)r+1 − exp(r)ε1/4 − poly(2poly(`), 1/δ)

kΩ(1)

Note that the qualitative version immediately implies the quantitative version. The three terms sub-
tracted from 1 above are controlled as follows: the first corresponds to r, the second correspond to ε, and
the third term is o(1) as k grows.

2 Rephrasing in terms of eigenspaces

In this section we outline the proof of theorem 1.5. Define 〈F,G〉 = EA [F [A]G[A]]. If the graph J(k, `, t)
is clear from the context, we will denote the normalized adjacency matrix of J(k, `, t) by J , and we will let
A ∼ B denote that A,B are adjacent vertices of J(k, `, t). We conceptualize J as the linear operator on

functions
(

[k]
`

)
→ R such that (JF )[A] = EB∼A [F [B]]. We use the notation negl(k) for any quantity that

goes to zero as k goes to infinity and other parameters are held constant (usually, it will converge at least
as fast as 1/kΩ(1)).

Let S be an (r, ε) pseudorandom set in J(k, `, t). As standard first step to proving bounds on expansion
is the following observation: Let J be the adjacent matrix of J(k, `, t), and let F be the indicator function
of some set S of vertices. Then

δ(1− Φ(S)) = P
A

[A ∈ S] P
A∈S,B∼A

[B ∈ S] = P
A∼B

[A,B ∈ S] = 〈F, JF 〉

To show that Φ(S) is large, we’ll want to show that 〈F, JF 〉 is small. In the next section, we’ll describe
the (approximate) eigendecomposition J=0 ⊕ J=1 ⊕ . . . ⊕ J=` of J which has (approximate) eigenvalues λi.
Let F = F=0 + F=1 + . . .+ F=` be the projection of F onto these spaces. Then

〈F, JF 〉 =
∑̀
i=1

λi 〈F=i, F=i〉 (*)

Now, we won’t actually be able to prove that J=i give the eigenspaces of J(k, `, t). However, we’ll be able
to show that the above equation holds up to an additive o(1) factor (theorem 3.5). Moreover, we’ll see that
λi decays exponentially, approximately like λi ≤ (t/`)i. Thus, for i > r, we’ll simply rely on the eigenvalues
being small to bound (*) (plus an application of Parseval to get

∑
i 〈F=i, F=i〉 ≤ δ). So far we have

〈F, JF 〉 ≤
r∑
i=1

(t/`)r 〈F=i, F=i〉+ (t/`)r+1δ + negl(k)
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For i ≤ r, pseudorandomness will be needed. Our goal will be to prove that (r, ε) pseudorandomness implies
an upper bound on the weight of F on the ith level (for i ≤ r) of the form

〈F=i, F=i〉 ≤ δεΩ(1)f(i) + negl(k)

The δ will cancel out and we’ll be left with an ε term to force 1 − Φ(S) to be small. The exact bound we
will get is

Theorem 2.1 (Theorem 2.15 from [KMMS18]). For any fixed `, t, r, ε, there exists k large enough and δ
small enough such that for any (r, ε)-pseudorandom S with µ(S) = δ in J(k, `, t), we have

〈F=i, F=i〉 ≤ exp(i)δε1/4 + negl(k)

for i = 0, 1, . . . , r.

This is the main technical results, which we discuss in section 5. We are left with:

1− Φ(S) =
1

δ
〈F, JF 〉 ≤

r∑
i=1

ε1/4 exp(i) + (t/`)r+1 + negl(k)

≤ ε1/4 exp(r) + (t/`)r+1 + negl(k)

The next section describes the eigenspaces J=i. Unfortunately, we also won’t be able to work with
the exact projections F=i onto the eigenspaces. Instead, we’ll consider approximate projections F≈i which
you can prove are within a negl(k) factor of F=i. The section after next describes these approximate
decomposition, which are one of the main tools to proving Theorem 2.15 from [KMMS18].

3 The eigendecomposition

Definition 3.1. Define the “space spanned by the first i levels” J≤i as follows: for F :
(

[k]
`

)
→ R, let F ∈ J≤i

if and only if there exists some f :
(

[k]
i

)
→ R such that, for all A ∈

(
[k]
`

)
, we have

F [A] =
∑

I⊆A,|I|=i

f(I)

Moreover, define the “space of level i functions” J=i = J≤i ∩ J⊥≤i−1.

Note the following: J≤i is a linear subspace, J≤i ⊆ J≤i+1 (you can prove this by an averaging argument),
and J≤` consists of all functions on J(k, `, t). Thus, we see that the space of real valued functions on J(k, `, t)
decomposes as J=0 ⊕ J=1 ⊕ . . .⊕ J=`.

Lets look at the first few levels as examples:

• J=0 is the set of all constant functions

• J=1 can be thought of as all additive functions on [k] with average zero. That is, F [A] =
∑
a∈A f(a)

where we also have Ei∈[k] [f(a)] = 0.

• J=2 is a bit less natural, but is defined by a set of weights on all pairs over [k], and has zero correlation
with with any additive function.

Here’s an important alternative characterization of J=i: it’s those functions in J≤i whose f function is
“orthogonal to the µR operator” for every |R| < i.

Lemma 3.2. F ∈ J=i if and only if F ∈ J≤i and µR(F ) = 0 for every R ⊆ [k] with |R| < i.
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Proof. Consider an F ′ ∈ J≤j for some j < i, say F ′[A] =
∑
J⊆A,|J|=j f

′(J). We have

〈F, F ′〉 = E
A

F [A]
∑

J⊆A,|J|=j

f ′(J)


=

1(
k
`

) ∑
A,|A|=`

∑
J⊆A,|J|=j

F [A]f ′(J)

=
1(
k
`

) ∑
|J|=j

∑
A⊇J,|A|=`

F [A]f ′(J)

=
1(
k
`

) ∑
|J|=j

f ′(J)

(
k

`− j

)
µJ(F )

Now, for different F ′ in different J≤j , we can set any value we want for each f ′(J). Thus, 〈F, F ′〉 will be
zero for all such F ′ if and only if µJ(F ) = 0 for all J with |J | < i, as desired.

Moreover, the above lemma is true if we replace F ∈ J=i with any f such that F [A] =
∑
I⊆A,|I|=i f(I).

This generalizes the “additive with average zero” characterization that we provided for J=1. (This is actually
the more important property – the above lemma is provided as a much more simple special case).

Lemma 3.3 (Lemma 2.6 in [KMMS18], analogue of Lemma 2.19 from [DKK+18]). Let k > exp(`), ` ≥ 2,
and suppose F ∈ J≤i is given by F [A] =

∑
I⊆A,|I|=i f(I). Then F ∈ J=i if and only if for all R ⊆ [k],

|R| < i, we have µR(f) = 0.

The proof is actually only given for the Grassman Graph in [DKK+18].

It turns out that J=i are the eigenspaces of J , the adjacency matrix of J(k, `, t). However, this is (ap-
parently) difficult to prove, and it suffices to show that these are approximate eigenspaces up to an additive
o(1) error.

Definition 3.4. For i = 0, . . . , t, define λi = λi(k, `, t) =
(
t
i

)
/
(
`
i

)
. For i > t, define λi = λi(k, `, t) = 0.

Theorem 3.5 (Theorem 2.7 in [KMMS18]). For any F ∈ J=i such that F [A] =
∑
I⊆A,|I|=i f(I), we have

‖JF − λiF‖∞ ≤
22`

k
‖f‖∞

Proof. The proof procedes like this: JF [A] is the average over neighbors B of A, and F [B] is (essentially)
the average of f over subsets I of B with |I| = i. You can look separately at terms with different sizes of
I ∩A, and see that in the end there is a big contribution only when I ⊆ A. When I ⊆ A on the other hand,
the resultant term is exactly λiF [A]. Details can be found in [KMMS18].

Note that

λi =
t(t− 1) . . . (t− i+ 1)

`(`− 1) . . . (`− i− 1)
≤ (t/`)i

as needed.

4 Approximate Decompositions

The projection of F :
(

[k]
`

)
→ R onto the ith eigenspace J=i is denoted by F=i. The corresponding function

f=i :
(

[k]
i

)
→ R is such that F=i[A] =

∑
I⊆A,|I|=i f=i(I). (This must exist by definition. It’s not clear that

f=i should be unique, but any such function will work for all the claims we make.) We call the formula
F = F0 + F1 + . . .+ F` the decomposition of F .
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Unfortunately, there is no formula for F=i in general. However, the following formulas will turn out to give
“approximate decompositions” which will be close enough for what we need. Define F≈0[A] = µ(F ) = f≈0,
then inductively define

f≈i(I) := µI(F )−
∑
J(I

f≈|J|(J)

F≈i[A] :=
∑

I⊆A,|I|=i

f≈i(I)

Let’s discuss some intuition for why this should work. As for any graph, the projection onto the space
of constant functions is given by F=0[A] = µ(F ) for every A. Unfortunately, this formula already fails to be
exact when i = 1. Let’s take a look at this case in detail:

Claim 4.1 (Adapted from Lemma 2.22 of [DKK+18]). For approximate decomposition i = 1, we have
f≈i(x) = f=i(x) + negl(k).

More precicely, let f1(x) = c(µ{x}(F )− µ(F )) for scaling factor c = (k− `)/(k− 1) ≈ 1. Then f1 = f=1.

Proof. Let G[A] = F [A]−
∑
x∈A f1(x)− µ(F ). By lemma 3.2, it suffices to show that µ{x}(G) = 0 for every

x ∈ [k] (as then G is orthogonal to J≤i). Evaluating gets us:

µ{x}(G) = µ{x}(F )− µ(F )− E
A3x

∑
y∈A

f1(y)


= µ{x}(F )− µ(F )− f1(x)− E

A3x

 ∑
y∈A,y 6=x

f1(y)


= (1− c)[µ{x}(F )− µ(F )]− (`− 1) E

A3x
y∈A,y 6=x

[f1(y)]

= (1− c)f1(x)− (`− 1) E
y∈[k]\{x}

[f1(y)]

Now, to get intuition for our less precise claim, it suffices to see whey the last term above is negligible.
Indeed, the expectation of f1(y), uniform over all y, is zero by construction. The above distribution over y
above is almost uniform over all y, and the statistical difference between y uniform over [k] and y uniform
over [k] \ x goes to zero as k →∞.

For the more precise claim we are trying to show, we evaluate the last expectation above via:

E
y∈[k]

[f1(y)] = c

[
E

y∈[k],A3y
[F [A]]− µ(F )

]
= 0

E
y∈[k]

[f1(y)] =
k − 1

k
E

y∈[k]\x
[f1(y)] +

1

k
f1(x)

=⇒ E
y∈[k]\x

[f1(y)] = −f1(x)

k − 1

(if we had any weak bound on f1(x) this would also make the claim that this term is negligible in k precise).
Putting this together gets us exactly what we want:

µ{x}(G) =

(
1− c− `− 1

k − 1

)
f1(x) = 0

We can provide one more piece of intuition for how these approximate decompositions work, in term of
an analogy to the boolean hypercube. The hypercube has an extremely nice eigenbasis, namely the familiar
Fourier functions {χS}S⊆[n]. The analogous operator to µR(f) would be Ey≥r [f(y)], which uses the natural
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identification of the boolean hypercube with subsets of [n]. If you’re given the “low-level” Fourier coefficients

f̂(J) for |J | < i, then you can use this expectation operator to calculate the coefficient for some I with |I| = i
as follows:

E
y≥1[I]

[χJ(y)] =

{
1 J ⊆ I
0 otherwise

=⇒ E
y≥1[I]

[f(y)] =
∑
J⊆[n]

f̂(J) E
y≥1[I]

[χJ(y)] =
∑
J⊆I

f̂(J)

=⇒ f̂(I) = E
y≥1[I]

[f(y)]−
∑
J(I

f̂(J)

When you move to the Johnson graph, the µR operator still “zeros out the higher levels” (i.e. lemma 3.2)
as desired. However, you no longer get exact equality on the lower levels, making fapproxi imprecise.

In the next section we will require the following claims.
Fact 2.12 from [KMMS18], the analogue of Lemma A.2 from [DKK+18]:

|f≈i(I)| ≤ ‖F‖∞2i
2

This result simply states that f≈i cannot blow up too much as a function of the values of F . The proof is
by induction.

Fact 2.11 from [KMMS18], the analogue of Claim A.1 from [DKK+18]: For all |J | < i we have:

|µJ(f≈i)| ≤ ‖F‖∞
210i2

k
= ‖F‖∞ negl(k)

This result states that approximate decompositions satisfy an approximate version of lemma 3.3.

5 Analysis Of Higher Moments

Recall the main theorem we wish to prove, that a pseudorandom set cannot put too much mass on the lower
levels. Let η be the mass 〈F=i, F=i〉 of F=i on the i-th level.

Theorem (Theorem 2.1, aka Theorem 2.15 from [KMMS18]). For any fixed `, t, r, ε, there exists k large
enough and δ small enough such that for any (r, ε)-pseudorandom S with µ(S) = δ in J(k, `, t), we have

〈F=i, F=i〉 ≤ exp(i)δε1/4 + negl(k)

for i = 0, 1, . . . , r.

The proof of this is to analyze the fourth moment of F≈i.

Lemma 5.1 (Lower Bound).

EA[F 4
≈i(A)] ≥ η5

δ4

Proof Idea. Since F puts a lot of weight on the i-th level, we have Fi ≈`2 F . Since F≈i ≈`2 F=i, we
have F≈i ≈`2 F . Since F is 1 with probability at least δ, this will tell us that F≈i is close to 1 with at least
δ/2 probability for appropriate choice of parameters. This means that the fourth moment is large. Since
this is simple to execute, we don’t present the exact details.

Lemma 5.2 (Upper Bound).

EA[F 4
≈i[A]] ≤ exp(i)ηε+

exp(i)√
k
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It is not too hard to see that putting these two bounds together gives us the required bound. We now
upper bound the third moment EAF 3

≈i(A), instead of the fourth bound as in the previous theorem. We
remark that the analysis is similar, but more involved and not any more illuminating.

Proof. Recall that F≈i(A) =
∑
I⊆ f≈i(A) because of the way we defined the approximate projections. We

have to analyze:

E
A
F 3
≈i[A] = E

A

∑
I1,I2,I3⊆A

|I1|=|I2|=|I3|=i

f≈i(I1)f≈i(I2)f≈i(I3)

The expression on the right-hand-side involves picking three uniformly random sets I1, I2, I3 and then
analyzing the expected value of f≈i(I1)f≈i(I2)f≈i(I3). To do this, it will help to divide this expectation
into terms where each term corresponds to a fixed pattern of intersection of I1, I2, I3. More precisely, an
intersection pattern σ is a 4-tuple of numbers. A pattern corresponding to three sets A,B,C is the tuple
(|A∩B|, |A∩C|, |B∩C|, |A∩B∩C|). For every possible intersection pattern, we will bound the expectation.
We now describe the details of this proof.

E
A
F 3
≈i[A]

. . .By definition, F≈i(A) =
∑

I⊆A,|I|=i

f≈i(I)

= E
A

∑
I1,I2,I3⊆A

|I1|=|I2|=|I3|=i

f≈i(I1)f≈i(I2)f≈i(I3)

. . . Instead of summing over uniformly random I1, I2, I3 ⊆ A of size i,

we sum over a union size d ∈ [i, 3i]

and over uniformly random I1, I2, I3 ⊆ A whose union is of size d.

=

3i∑
d=i

EA
∑

|I1∪I2∪I3|=d
|I1|=|I2|=|I3|=i
I1,I2,I3⊆A

f≈i(I1)f≈i(I2)f≈i(I3)

. . .We loosely upper bound the number of ways to choose a such I1, I2, I3

by choosing their union in

(
`

d

)
ways,

and then choosing I1, I2, I3 in

(
d

i

)3

ways

≤
3i∑
d=i

(
`

d

)(
d

i

)3

∣∣∣∣∣∣∣∣∣∣∣
E

A,I1,I2,I3
I1,I2,I3⊆A
|I1∪I2∪I3|=d
|I1|=|I2|=|I3|=i

f≈i(I1)f≈i(I2)f≈i(I3)

∣∣∣∣∣∣∣∣∣∣∣
=

3i∑
d=i

(
`

d

)(
d

i

)3

∣∣∣∣∣∣∣ E
|I1∪I2∪I3|=d
|I1|=|I2|=|I3|=i

f≈i(I1)f≈i(I2)f≈i(I3)

∣∣∣∣∣∣∣
. . .We sample an intersection pattern σ from the distribution γ(d) of patterns

induced by uniformly random triples of sets I1, I2, I3 whose union is of size d,

and then pick a uniformly random I1, I2, I3 satisfying this pattern.

≤
3i∑
d=i

(
`

d

)(
d

i

)3 ∑
σ∼γ(d)

P[σ]

∣∣∣∣ E
(I1,I2,I3)∈σ

f≈i(I1)f≈i(I2)f≈i(I3)

∣∣∣∣
7



We first estimate the coefficient in this expression.(
`

d

)(
d

i

)3

≤ (e`)d

dd
(ed)3i

i3i

≤ `ded+3i d
3i−d

i3i

≤ `ded+3i (3i)
3i−d

i3i

≤ `dexp(i)

Lemma 5.3. For all intersection patterns σ ∈ γ(d), the quantity in the expectation is bounded, that is:∣∣∣∣ E
(I1,I2,I3)∈σ

f≈i(I1)f≈i(I2)f≈i(I3)

∣∣∣∣ ≤ ηε exp(i)

`d
+ neg`(k)

Suppose we had this lemma, the previous calculation shows us that EAF 3
≈i[A] would be bounded by(ηε exp(i)

`d
+ neg`(k)

)
× `dexp(i) . ηε exp(i) + neg`(k)

This gives us the desired upper bound on the fourth moment. It now suffices to prove Lemma 4.3

5.1 Proof Of Lemma 5.3

We now fix d and a pattern σ ∼ γ(d) and estimate∣∣∣∣ E
I1,I2,I3∈σ

f≈i(I1)f≈i(I2)f≈i(I3)

∣∣∣∣
As we saw before, this distribution on I1, I2, I3 can alternatively be thought of as first sampling D =
{x1, . . . , xd} and then I1, I2, I3 ⊆ D satisfying σ. We wish to estimate:∣∣∣∣∣∣ E

|D|=d,
E

I1∪I2∪I3=D
(I1,I2,I3)∈σ

f≈i(I1)f≈i(I2)f≈i(I3)

∣∣∣∣∣∣
Case 1: The intersection pattern σ is such that there is some element x1 that appears in

exactly one of the sets, say I1.

Let J = I1 ∩ (I2 ∪ I3) ⊆ {x2, . . . , xd} be all those elements in I1 that are not exclusive to I1. Consider:

E
|D|=d,

E
I1∪I2∪I3=D
(I1,I2,I3)∈σ

f≈i(I1)f≈i(I2)f≈i(I3) = E
J
f≈i(I2)f≈i(I3)

[
E

I1−J
f≈i(I1)

]
The distribution of I1 in the right hand side is basically a uniform random set of size i conditioned on
containing J , but not intersecting with I2 ∪ I3 − J . That is,

E
I1−J

f≈i(I1) = E
I1:J⊆I1

I1⊆{x2,...,xd}C∪J

f≈i(I1)

We would like to replace E
I1:J⊆I1

I1⊆{x2,...,xd}C∪J

f≈i(I1) by E
J⊆I1

f≈i(I1). To analyze the error incurred by this

substitution, we try to understand the difference between distribution of I1 conditioned on containing J but
not any of {x2, . . . , xd} − J as opposed to the distribution of I1 conditioned just on containing J . We claim
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that these distributions are d2

k apart in total variational distance. This is because the probability that a

random set B containing J , also contains an element of {x2, . . . , xd}−J is at most d
k (the probability that we

pick an element of {x2, . . . , xd}−J) times d (the maximum number of elements of the set B). Therefore, the
distribution of I such that J ⊆ I2 ⊆ {x2, . . . , xd}C ∪ J is obtained by conditioning the uniform distribution

of I such that J ⊆ I on an event that has negligible (≤ d2

k ) probability, thus their total variational distance

is at most d2

k . This tells us:∣∣∣∣∣∣∣ E
I1:J⊆I1

I1⊆{x2,...,xd}C∪J

f≈i(I1)

∣∣∣∣∣∣∣ ≤
∣∣∣∣ E
J⊆I1

f≈i(I1)

∣∣∣∣+
d2

k
‖f≈i‖∞

The latter quantity ‖f≈i‖∞ is upper bounded by 2i
2‖F‖∞ ≤ 2i

2

due to fact 2.12. The former |EJ⊆If≈i(I)|
is upper bounded by 210i2

k ‖F‖∞ because f≈i is ‘approximately in J≤i’ due to fact 2.11. Fact 2.12 also tells
us that

|f≈i(I2)|, |f≈i(I3)| ≤ ‖f≈i‖∞ ≤ 2i
2

Using i ≤ d ≤ 3i gives us a total bound of:

9i2

k
23i2 +

210i2

k
= neg`(k)

Case 2. The intersection pattern σ is such that every x belongs to at least two sets in
{I1, I2, I3}.

Let H3 = I1∩ I2∩ I3 be those elements that belong to all the sets and H2 = (I1∩ I2)∪ (I2∩ I3)∪ (I3∩ I1)
be those elements that belong to exactly two of them and H = I1 ∪ I2 ∪ I3 be those that belong to any of
them. Note that I1 ∪ I2 ∪ I3 = H2 ∪H3 = H.

Ef≈i(I1)f≈i(I2)f≈i(I3)

= EH3EH2f≈i(I1)f≈i(I2)f≈i(I3)

Claim.

EH3EH2f≈i(I1)f≈i(I2)f≈i(I3) ≤ EH3

√
EH2f≈i(I1)2

√
EH2f≈i(I2)2

√
EH2f≈i(I3)2

Proof. The reason is that every term in H2 appears in exactly two of the sets so we can apply Cauchy-
Schwartz on those two sets and continue. We show the proof below. Let Pi,j = Ii∩Ij−H3 be those elements
that appear in Ii and Ij but not in all three sets. We first look at Pi,j and apply Cauchy Schwartz on those
elements. We remark that all these inequalities must hold with |f≈i(I)| instead of f≈i(I) but for ease of
notation, we just use f≈i(I).

EH3
EH2

f≈i(I1)f≈i(I2)f≈i(I3)

= E
H3,H2−P1,2

f≈i(I3)
[
E
P1,2

f≈i(I1)f≈i(I2)
]

. . . Because I3 does not depend on I1 ∩ I2 −H3 = P1,2

≤ E
H3,H2−P1,2

f≈i(I3)
√

E
P1,2

f≈i(I1)2
√

E
P1,2

f≈i(I2)2 . . .Cauchy-Schwarz

= E
H3,H2−P1,2

√
E
P1,2

f≈i(I1)2f≈i(I3)
√

E
P1,2

f≈i(I2)2

9



We now apply the same with I2 ∩ I3 to obtain:

E
H3,H2−P1,2

√
E
P1,2

f≈i(I1)2f≈i(I3)
√

E
P1,2

f≈i(I2)2

= E
H3,H2−P1,2−P2,3

√
E
P1,2

f≈i(I1)2
[
E
P2,3

f≈i(I3)
√

E
P1,2

f≈i(I2)2
]

≤ E
H3,H2−P1,2−P2,3

√
E
P1,2

f≈i(I1)2
√

E
P2,3

f≈i(I3)2
√

E
P1,2∪P2,3

f≈i(I2)2

= E
H3,H2−P1,2−P2,3

√
E

P1,2∪P2,3

f≈i(I2)2
√

E
P1,2

f≈i(I1)2
√

E
P2,3

f≈i(I3)2

= E
H3,H2−P1,2−P2,3

√
E
H2

f≈i(I2)2
√

E
P1,2

f≈i(I1)2
√

E
P2,3

f≈i(I3)2

= E
H3

√
E
H2

f≈i(I2)2 E
P1,3

√
E
P1,2

f≈i(I1)2
√

E
P2,3

f≈i(I3)2

≤ E
H3

√
E
H2

f≈i(I2)2
√

E
P1,2∪P1,3

Ef≈i(I1)2
√

E
P1,3∪P2,3

f≈i(I3)2

= E
H3

√
E
H2

f≈i(I2)2
√

E
H2

f≈i(I1)2
√

E
H2

f≈i(I3)2

We now apply Cauchy-Schwartz for the last time.

= E
H3

√
E
H2

f≈i(I2)2
√

E
H2

f≈i(I1)2
√

E
H2

f≈i(I3)2

≤
√

E
H3

(
E
H2

f≈i(I2)2
)(

E
H2

f≈i(I1)2
)√

E
H2∪H3

f≈i(I3)2

We first bound E
H3

(
E
H2

f≈i(I2)2
)(

E
H2

f≈i(I1)2
)

. We let I1 = H3 ∪B, that is I1 − (I1 ∩ I2 ∩ I3) = B.

= E
H3

(
E
H2

f≈i(I2)2
)(

E
H2

f≈i(I1)2
)

≤
(
E
H3

(
E
H2

f≈i(I2)2
))(

max
H3

(
E
H2

f≈i(B ∪H3)2
)

≤
(
E
H
f≈i(I2)2

)(
max
H3

E
B
f≈i(B ∪H3)2

)
Thus, the final bound is:√(

EHf≈i(I2)2
)(

EHf≈i(I3)2
)

max
H3

EBf≈i(B ∪H3)2

We will show that the first two terms are bounded by η exp(i)
`i each and the last term is bounded by ε exp(i)

`i−a .
We will use the following lemma whose proof appears in the next section.

Lemma 5.4. Let |A| = a ≤ i. Then:

E
B⊆Ā
|B|=i−a

f≈i(B ∪A)2 ≤ 2a
∑
Y⊆A

W i−a[F |A−Y ](
`
i−a
) + neg`(k)

Corollary 5.5. If F is pseudorandom with respect to sets of size i ≥ a, we can bound the R.H.S of the
previous expression (up to neg`(k) factors) by:

2a
∑
Y⊆A

E[F |A−Y ](
`
i−a
) ≤ 2ε exp(i)

`i−a
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To apply this lemma to the first two terms, we simply set A = ∅. For the last term, we let B be of size
b = |I1| − |H3| = i− a, and A be H3 of size a = |H3|. Putting all this together gives us a bound of:√

exp(i)η2ε

`3i−a
± neg`(k)

Since every element appears in at least 2 sets, we have:

3i− a = |I1|+ |I2|+ |I3| − |I1 ∩ I2 ∩ I3| = 2|I1 ∪ I2 ∪ I3| ≥ 2d

Plugging this back into the previous bound, we get:√
η2ε exp(i)

`2d
± neg`(k)

=
η
√
ε exp(i)

`d
± neg`(k)

This completes the proof of Lemma 5.3.

5.2 Restrictions

In order to prove Lemma 5.4, we will have to understand how restricted functions interact with level i weights.
Let us define a restriction of a function F |X :

(
k

`−|X|
)
→ R, which captures conditioning F :

(
k
`

)
→ R on

containing a given set X.
F |X(A) := F (X ∪A)

Lemma 5.6.
f≈i+1,F (I ∪ {x}) = f≈i,F |{x}(I)− f≈i,F (I)

Proof:

f≈i+1,F (I ∪ {x})

=
∑

J⊆I∪{x}

(−1)|I∪{x}|−|J| E
K⊇J

F (K)

=
∑
J⊆I

(−1)|I|+1−|J| E
K⊇J

F (K) +
∑
J⊆I

(−1)|I|+1−|J∪{x}| E
K⊇J∪{x}

F (K)

= −
∑
J⊆I

(−1)|I|−|J| E
K⊇J

F (K) +
∑
J⊆I

(−1)|I|−|J| E
K⊇J

F |{x}(K)

= f≈i,F |{x}(I)− f≈i,F (I)

Lemma 5.7.
f≈i+|X|,F (I ∪X) =

∑
Y⊆X

(−1)|X−Y |f≈i,F |Y (I)

The proof follows by doing a similar calculation as before on the expression∑
J⊆I∪X

(−1)|I|+|X|−|J| E
K⊇J

F (K) =
∑
Y⊆X
J⊆I

(−1)|I|+|X|−|J|−|Y |EK⊇J∪Y F (K)

5.3 Proof Of Lemma 5.4

Lemma 5.8.

E|I|=if≈i(I)2 =
W=i[F ](

`
i

) ± negl(k)
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Proof.

W=i[F ]

≈ EA[F 2
≈i(A)]

= EA
( ∑
I⊆A,|I|=i

f≈i(A)
)2

= EA
∑

I⊆A,|I|=i

f≈i(A)2 +

(
`

i

)
cross terms

=

(
`

i

)
EIf≈i(I)2 + negl(k)

The reason behind the cross terms begin negligible is very similar to the analysis of Case 1 intersections. We
wish to analyze the expression EAf≈i(I1)f≈i(I2) where I1 6= I2. Fix the intersection pattern of I1, I2 to be
σ. The previous expression is the same as E(I1,I2)∈σf≈i(I1)f≈i(I2). As before, we fix the elements in I1 − I2
and then take an expectation of f≈i(I2) over the elements of I2− I1. The distribution of I2 here is a random
set of size i containing I1 ∩ I2 and avoiding I1 − I2. We replace this distribution by that of a random set of
size i containing I1 ∩ I2 by incurring neg`(k) error. By claim 2.11, EI2−I1f≈i(I2) is neg`(k).

This tells us that analyzing the expected weight of f≈i(I)2 over random sets I of size i is equivalent to
understanding the level i weight of F . We will now show that analyzing the expected weight of f≈i(I)2 over
random sets I of size i containing A is equivalent to understanding the level i weight of F |A−Y over subsets
Y ⊆ A.

Lemma 5.4. Let |A| = a ≤ i. Then:

E
B⊆Ā
|B|=i−a

f≈i(B ∪A)2 ≤ 2a
∑
Y⊆A

W i−a[F |A−Y ](
`
i−a
) + neg`(k)

Corollary 5.4. If F is pseudorandom with respect to sets of size i ≥ a, we can bound the R.H.S of the
previous expression (up to neg`(k) factors) by:

2a
∑
Y⊆A

E[F |A−Y ](
`
i−a
) ≤ 2a

∑
Y⊆A

E[F ] + ε(
`
i−a
) ≤ 2ε2a(

`
i−a
) ≤ 2ε exp(i)

`i−a

Proof Of Lemma 5.7 Consider:

E
B⊆Ā
|B|=i−a

f≈i(B ∪A)2

= E
B⊆Ā
|B|=i−a

( ∑
Y⊆A

(−1)|Y |f≈i,F |A−Y
(B)

)2

. . . from equation (1)

≤ E
B⊆Ā
|B|=i−a

2a
( ∑
Y⊆A

f≈i,F |A−Y
(B)2

)
. . . by Cauchy Schwarz

= 2a
∑
Y⊆A

E
B⊆Ā
|B|=i−a

f≈i,F |A−Y
(B)2

≤ 2a
∑
Y⊆A

W i−a[F |A−Y ](
`
i−a
) + neg`(k)
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