New Lower Bound Techniques for the Query Complexity of
Truthful Mechanisms

A survey of “Computational Efficiency Requires Simple Taxation” [Dob16]

Clay Thomas and Uma Girish

January 2019

Abstract

A major goal in algorithmic game theory is to understand the communication complexity of
truthful combinatorial auctions. There were few known lower bounds on the number of value
queries required, and no known lower bounds on the number of demand queries or amount of
general communication required. This paper shows that for rich enough domains of valuation
functions, the communication complexity of a truthful mechanism on that domain is character-
ized by the “taxation complexity” of that mechanism. A similar characterization is developed
for the number of value queries and demand queries in terms of “menu complexity” and “affin-
ity”. This provides a new technique to lower bound the communication complexity of truthful
mechanisms. The author also shows that truthful two-player mechanisms give rise to simultane-
ous mechanisms achieving the same welfare, suggesting the possibly easier approach of proving
lower bounds for simultaneous communication problems.

1 Introduction

1.1 Preliminaries

A combinatorial auction is the problem of selling m items among n bidders, also called players.
Each bidder ¢ has a valuation function v; : 2lml R>o on subsets of items. These valuations are
monotone, so that the value for a bundle cannot decrease on adding more items. The seller wishes
to communicate with the bidders and decide on the allocation. A mechanism for this problem is a
complete specification of the interaction between the seller and the bidders, and an allocation rule.
The allocation rule depends on this interaction and for each possible transcript, it specifies which
bundle S; to allocate to bidder 7 and at what price p;. The seller decides upon a mechanism based
on maximizing some property of the allocation; commonly studied ones include social welfare and
revenue.

A fundamental question is to understand how robust mechanisms are to bidders behaving
selfishly. Each bidder wants to maximize their own utility, which is v;(S;) — p;(S;), where S; is the
set of items allocated to them. It might be possible for them communicate dishonestly with the
bidder and end up with a better set. Truthfulness is a useful property for mechanisms to have,
that make them robust to such behavior.

For “direct” mechanisms, i.e. those which ask a bidder to report their entire valuation function,
the notion of “truthfulness” is simple: regardless of what other players do, you get higher utility
by reporting your actual valuation function. For more general mechanisms, which interact with
bidders in multiple rounds in arbitrary ways, things become more subtle. We define truthfulness

as follows: any bidder i can (weakly) maximize their utility by answering queries according to
their true valuation function v;, assuming that other bidders answer in a way consistent with
some valuation functions. Formally, this says that telling the truth is an ez-post Nash equilibrium.
Informally, all it means is that we assume the strategies of the other players are not “crazy”. There
is a stronger notion, called “dominant strategy incentive compatible,” which does not assume other
bidders act in such a “non-crazy” way. In particular, in a dominant strategy incentive compatible
mechanism, no matter what strategy is used by the other players, a bidder (weakly) maximizes his
utility by telling the truth. We will not use this concept unless explicitly stated.

A truthful mechanism may alternately be viewed through the concept of a menu. Fix any
setting v_; of valuations of bidders other than ¢. Consider varying the valuation of player ¢ and let
M,,_, be the collection of all possible sets and prices (S;, p;) that the player ¢ would choose to buy.
In other words,

Mv,i = {(Sl(vl, U,i),pi(vi, Ufi)) |UZ‘ S V}
where we define S;(v;, v_;) and p;(v;, v—;) as the set and price of the set allocated by the mechanism
to player i when the valuations are vy, ..., v, (note'). When the mechanism is truthful, this menu
satisfies the following interesting property. If the player ¢ has valuation v;, then, among all the
options on the menu M, _,, the one corresponding to S;(v;, v_;) maximizes his utility. That is, for
every v}, we have

i (Si(vi,v—:)) — pi(vi,v_i) > vi(Si(vj,v_4)) — pi(v, V)

This is exactly the definition of truthfulness. This fact, that each player receives their favorite item
on the menu, is known as the tazation principle. It allows us to interpret truthful mechanisms
as implicitly presenting a menu to each player ¢ based on the valuations v_; of the other players
and asking each player to choose their favorite option on their menus. Ignoring tie breaking issues
for the moment, it turns out that any mechanism which does what we described is also truthful.
This characterization essentially allows us to reason about menu mechanisms instead of arbitrary
truthful mechanisms.

We further assume that menus are monotonic, that is, for every T, the price of any bundle
containing T is at least the price of T. Dobuzinski proves that this is actually without loss of
generality, in the sense that any allocation function can be implemented with monotonic prices
(and bidders will always be charged the same payments).

The communication complexity cc(A) of a mechanism is the maximum number of bits exchanged
between the bidders and the seller in any run of the mechanism. The value query complexity val(A)
of a mechanism is the maximum number of value queries made by the seller in any run of the
mechanism, where the seller’s communication is restricted to be value queries. The demand query
complexity dem(A) of a mechanism is the maximum number of demand queries made by the seller
in any run of the mechanism, where the seller’s communication is restricted to be demand queries.
A major goal is to understand these complexities for truthful mechanisms and this paper presents
a promising approach. We present an overview of the results below.

1.2 Statement Of Results

Since truthful mechanisms can thought of as implicitly presenting menus to players, if there are
many possible menus, then intuitively, the players must communicate enough information to distin-
guish these menus. This leads Dobzinski to define the following quantity that captures the number

!Defining these functions S; and p; rigorously is a bit tricky. The mechanisms does not directly know the valuation
functions v;, so you must consider how the players will act before associating valuation functions with an outcome. For
our purposes, they are the allocations and prices when players play honestly according to their valuation functions.

of possible menus.
taz(A) := maxlog [{M,_,Jv_; € V" '}|

Dobzinski shows that taxz(A) characterizes the communication complexity cc(A) of mechanisms A
that are truthful for general valuations. That is,

tax(A) < cc(A) < poly(tax(A),...)

Here, (...) stands for some technical terms which we’ll ignore for the purposes of summary.

Dobzinski also develops a similar result for the value query complexity val(A) and demand query
complexity dem(A). For value queries, the correct complexity measure is the maximal number of
bundles a bidder might receive given any menu (the menu complexity menu(A)). For demand
queries, a somewhat more subtle property (called the affinity aff(A)) of the prices given in the
menus is needed. Dobzinski shows the following.

menu(A) < wal(A) < poly(menu(A),...)
Wff(A) < dem(A)

An important point is that in each of these query models, Dobzinski’s complexity measure gives
a lower bound for the amount of communication needed in that model. This leads us to new lower
bound techniques for truthful mechanisms that we describe in the next section. In our project,
we briefly review the left hand side of the first inequality (for a more detailed discussion, see the
lecture notes), and give the details for the last two inequalities.

1.3 Application: Lower Bounds For truthful mechanisms

A major contribution of this work is to develop techniques to prove lower bounds on the commu-
nication complexity of (universally) truthful mechanisms. Previously, some lower bounds had been
developed for restricted classes of valuation functions with value query access. It was known [DV16]
that truthful mechanisms that achieve a m!'/27¢ approximation with value queries require expo-
nentially many queries on submodular valuations. A similar result [Dugll] also existed for truth-
ful in expectation mechanisms and for other query models of succinctly represented submodular
valuations [DV12]. On the positive side, the most efficient truthful mechanism known is a /m
approximation due to Lavi and Swamy [LS05]. It is a major open question whether this is tight
and this work provides a possible approach to settling this question.

The results of this paper show that mechanisms that are truthful for large enough domains must
have communication/value query/demand query complexity to be at least the taxation/menu/affinity
complexity respectively. This provides a technique to lower bound the former by studying the lat-
ter quantities. The only known application of this technique is the previous value query lower
bound [DV16] which actually bounds the menu complexity.

1.4 Application: Simultaneous mechanisms from truthful mechanisms

This paper also shows that two-player truthful mechanisms give rise to (possibly not truthful)
simultaneous mechanisms, where the two bidders simultaneously send a message to the seller who
then decides the allocation. Furthermore, the communication complexity of the latter is at most
the taxation complexity of the original mechanism. This gives rise to the simpler problem of lower
bounding the communication complexity of a simultaneous mechanism.

Along this line, it is worth mentioning the work of Braverman, Mao and Weinberg [BMW18] that
studies the communication complexity of the welfare estimation problem for arbitrary mechanisms
on binary XOS valuations where such simulations were shown not to hold.

We now present some intuition for the construction of simultaneous mechanisms for two players.
Here is an idea for a two round mechanism. Each player could present the other with the appropriate
menu. The players could then choose their favorite option from the menu. A difficulty with this
approach is that there may be multiple favorite options. For now, let us assume that in every
menu and for every valuation, there is exactly one option that maximizes revenue, in which case
our two round mechanism works. We can convert it into a simultaneous protocol as follows. Given
menus M1, Ms for players 1 and 2, the seller decides to award to player 1, the union of all the
best bundles that he could have wanted, conditioned on him producing the menu My for player 2.
More precisely, he gives S1 = Uy, produces M, BestOption(vy, M) to player 1 and the rest to player
2. The reason this works is that conditioned on producing M7, Ms, any best option for player 2
must be disjoint from every best option for player 1, otherwise the best options for player 1 and
player 2 would conflict.

The argument in the general case where there are multiple favorite options is a perturbation
argument. Dobzinski argues that it is reasonable to assume that any truthful mechanism can
‘handle’ small (but not too small) perturbations and a small perturbation has the effect of making
the utility maximizing bundle unique.

2 Review: Arbitrary Communication & Taxation Complexity

This section gives a very brief account of the notion of taxation complexity, and why it gives a
lower bound on communication complexity. For more details, see the lecture notes, and for the full
details, see Dobzinski’s paper.

Definition. Let A be a mechanism, truthful over a class of valuations V. The taxation complexity
tax(A) of A is the logarithm of the mazimum number of distinct menus which might be presented
to a player i:

tax(A) = max log [{M,_,Jv_; € V" }

This next proof introduces a key trick which all of our lower bound proofs will use: the idea of
treating the menu itself as a valuation function, and passing that as an input to the mechanism.
What we will show is that, given any distinct menus, we can cleverly come up with instances which
the mechanism needs more communication (i.e. another transcript) in order to tell apart.

Theorem 1. Let A be a deterministic mechanism which is truthful for general monotonic valuation
functions. Then tax(A) < cc(A) + 1.

Proof. First, assume that the final bit of the transcript of A is 1 if player ¢ gets positive utility, and
0 otherwise. We can do this (while maintaining truthfulness) by simply asking bidder i whether
he gets positive utility as the last step of the mechanism, adding one bit of communication. This
seems like a strange thing to do, but the reason is the following: we need to be able to tell from
the transcript alone whether player ¢ gets positive utility.

Now, consider any menu M presented to player ¢, and let v_; denote the valuations functions
for bidders other than ¢ which present menu M to i. Let vaq be the valuation function such that
vm(S) = M(S) if M(S) < oo, and vy (S) = B otherwise, where B is strictly larger than any
finite price in M. Note that, because we assume the menus M are monotonic, v, is monotonic. A
crucial fact is the following: when mechanism A is run on input (vaq, v—;), bidder i gets utility zero,
because i has value exactly equal to the price he needs to pay to receive any particular bundle.

Let M’ # M be a distinct menu presented by different valuation functions v’ ;. The crux of
the proof is the following claim:

Claim 2. The mechanism A cannot have the same transcript on inputs (vaq, v—;) and on (v, v’;).

Proof. Suppose for contradiction that the transcript of A was identical on (v, v—;) and on (v, v ;).
Call this transcript T'. By our assumptions, 7" must end in zero because bidder i gets zero utility.
The menus are distinct, so one of them must give a strictly greater price for some bundle S. Without
loss of generality suppose M(S) > M’'(S). A standard rectangle argument from communication
complexity tells us that mechanism A must also use transcript 7" on input (vag, v’ ;).

Now, when other bidders have values v’ ;, bidder ¢ is presented with menu M’. Because the
mechanism A is truthful, bidder ¢ must get his utility-maximizing bundle from M’. Observe that,
in menu M/, bidder ¢ with valuation v gets positive utility from set S. Thus, bidder ¢ must get
positive utility on input (v, v” ;). However, the mechanism A has transcript 7" on this input, and
T ends in zero (corresponding to bidder i getting utility zero). This is a contradiction, proving the
claim. O

Thus, there are at least as many transcripts as there are menus, specifically:
2ta7(4) < (number of menus for i) < (number of transcripts of A) < 2¢¢(4)

Thus taz(A) < cc(A). The extra +1 in the theorem statement comes from the assumption on the
final bit sent by A. O

3 Value Queries & Menu Complexity

In this section we establish the equivalence between value query complexity val(A) and the menu
complexity menu(A) of mechanisms A that are truthful on all valuations.

3.1 Lower Bound

Definition. We say a bundle S is strictly in a menu M if, for each T D S, T # S, we get
M(T) > M(S). Also, the grand bundle M is in the menu if it has finite price: M(M) < oo.
The menu complexity of a mechanism A is then

menu(A) = maxmax [{S|S is strictly in M,_, }|
(2 V—j

The proof will use a similar high-level idea as the one for general communication. This time,
we fix a menu, and consider different bundles in that menu. Using some cleverness (using the menu
itself as input) we provide inputs for which the mechanism needs more communication (i.e. needs
to make some specific value queries) in order to tell apart.

Theorem 3. Let A be a deterministic mechanism which is truthful for general monotonic valuation
functions and which only uses value queries. Then menu(A) < val(A) + 2.

Proof. Let M be an arbitrary menu presented to player ¢ by valuations v_; of the other players. Let
v be the valuation function such that va(S) = M(S) if M(S) < oo and v (S) = B otherwise,
where B is strictly larger than any finite price in M. Observe that player ¢ gets utility zero on
input (vaq,v—;). Let Sy be the bundle awarded to player i on input (vaq, v—;).

Now, let S be any bundle strictly in M and let S # () and S # Sy. Define a new input instance
via the valuation vg such that vg(S) = vm(S) + €, and vg(T) = v (T) for T # S, where € > 0 is
small enough that vg is still monotonic. Such an € exists because S is strictly in M.

Consider the execution of A on input (vaq, v—;). We'll show that, because A is truthful, it must
query the value of S for every S # Sy, (). Suppose for contradiction that A does not query bidder
i on the set S. Then it will allocate to player i the same bundle on input (vg,v—;) as it would
on (v, v—;), namely Sy, because the value queries for both inputs will be exactly the same. This
means player ¢ will get utility zero. However, vg(S) — M(S) = € > 0, i.e. player ¢ has a menu
option that gets him positive utility. Because the mechanism is truthful, player ¢ should get his
favorite option on the menu. This is a contradiction.

Thus, the mechanism must query every set strictly in the menu M, other than possibly () and
So. Thus, val(A) > menu(A) — 2, as desired. O

3.2 Upper Bound

In this section we prove that given any truthful mechanism A, there is a mechanism A’ which
simulates A with value query complexity at most poly(menu(A),...). We remark that there is a
step in the proof that isn’t true as stated, and we are unable to fix this. We will indicate this as it
appears.

A naive implementation is the following. For each i, the seller communicates with the players # i
and outputs the menu M, , for the player i. Each player then selects a utility maximizing bundle
in their menu and the seller awards them this option. This implementation is incorrect because
of tie-breaking: There may be several options that maximize a bidder’s utility and the seller must
award items consistently across bidders, without selling an item to more than one bidder. This
prompts us to define the following quantity.

Definition. tie®(A) is the communication complexity of the following n+ 1-player problem. Each
player i has a valuation function v; and a menu M; from which they must pick their favorite option.
We assume that everyone knows each M;. The seller wishes to interact with the bidders and find
an allocation of items so that each player gets an option of maximum utility from their menu.

Another difficulty with this implementation is in efficiently finding and computing the menus
M, _,. It is not even clear how to compactly represent this menu. This leads us to define the
following.

Definition. price?®(A) is the communication complexity of the following n-player problem. The
players # i have valuations v_; and the seller is given an input bundle S C [m]. The seller wishes
to interact with the bidders and find out the price M, _,(S) of that bundle in the menu presented
to player i by the other players.

The idea is to show that that menu for player i can be explicitly constructed by players {j : j # i}
with poly(price’®(A), menu(A)) value queries. The final mechanism is then as before. For each i,
the seller communicates with players # 4 to find the menu that player i should get, and presents
it to them (in a compact way). The seller further communicates with the players using tie’® (A)
value queries to break ties and decide on the allocation. It thus suffices to show that the menus
can be computed and represented efficiently.

Let us first see how to compactly represent the menu for player i. Note that for every set S, every
bundle containing it has price at least M(S), as we assume menus are monotonic. Furthermore,
if S is not strictly in the menu, this means that there is some bundle 7' = S U {j} whose price is
same as that of S. Either T is strictly in the menu or we can repeat this procedure to find some
strictly larger bundle whose price is the same. This process must end at a bundle strictly in the
menu. This shows us that for every S, there is some bundle containing S that has price exactly

M(S) and is strictly in the menu. Thus, the price function is determined by its values on those
bundles strictly in the menu, specifically

M(S) = min{M(T)|T 2 S, T is strictly in M}

Since there are at most menu(A) bundles strictly in the menu, the price function can be described
by the prices at these bundles. We now show how to efficiently construct the menu for ¢ = n and
the others follow by symmetry.

Theorem 4 (Menu Reconstruction Theorem). The menu for player n can be explicitly constructed
by players {1,...,n — 1} with poly(price’™(A), menu(A), m) value queries.

Proof. Recall that price’®(A) captures the value query complexity of deciding the price M,_ (S)
of a bundle S in the menu M, _, presented to n by the players {1,...,n — 1}. The intuition for
the reconstruction theorem is that there are at most menu(A) bundles strictly in any menu, so
if the players knew which bundles those were, they could find their using price’®(A) queries per
bundle and thus infer the prices of every set. We now present an efficient protocol for learning
these bundles.

Claim 5. Let 0 = pyp < p1 < ... < p be the distinct prices that appear in the menu M, _, .
(The price of the empty set is set to 0). Let N; be the number of bundles strictly in M,_, with
price at most p;. Then, for each i, there is a communication protocol for players [n — 1] with
poly(Ni,price”“l(A),m) value queries that outputs the bundles of price at most p; which are strictly
n M,_, . Furthermore, any such protocol necessarily queries some set of price p;41.

The theorem follows from this claim by an inductive argument. We run the above algorithm for
1 = 0 to obtain all bundles of price at most pg = 0. While doing this, we would have queried some
set of price p;. We can thus find p; by computing the minimum price of all sets queried whose
price is not pg. We thus obtain p; and repeat this process to find bundles of price at most py and
so on until we reach the bundle of largest price pi. The required bound follows because the total
number of value queries is at most

Zpoly(Ni,pricer(A) ,m) < poly (Z N;, price®@(A), m) < poly(menu(A), price®™(A), m)

The last line follows because of the following inequality bounding >, N;.

k—1 k
STNi=(k+1)No+ Y (k—i)(Nis1 — N;) < menu(A)(No+ Y Niy1 — N;) < O(menu(A)?)
7 1=0 i=0

This shows us how to use claim 4 to prove the reconstruction theorem. We now prove claim 4.

Proof of claim 5. We first prove that any algorithm that finds the bundles strictly in the menu M
of price at most p; must query some bundle of price p;1+1. Suppose not, consider the menu M’
obtained by altering M as follows. For each set of price p;+1, change its price to p;. Note that
there is at least one bundle of price p; strictly in M’ that is not strictly in M. This gives us a
contradiction to the assumption that the algorithm outputs all bundles of price at most p; strictly
in the menu.

We now present Dobzinski’s algorithm to find the bundles. To simplify notation, Dobzinski
introduces the valuation function v which is 0 on bundles whose price is at most p; and 1 on
bundles whose price is more than p;11. Let A = {A41,..., An,} be the set of bundles of price p;

which are strictly in the menu, i.e. those for which v(A4;) = 0 and v(T") = 1 for every strict superset
T of A;. We wish to find out Ay,..., Ay,. Note that v(S) = 0 precisely when S C A;. This
suggests the following recursive algorithm for finding A. We define Find(S, Allowed) to be the
set of bundles strictly in M of price p; which are of the form S U T for T' C Allowed. Note that
Find(0, M) is A. The following is a recursive procedure for Find(S, Allowed).

1: function FIND(S, Allowed)
2: Compute M(S)

3: if v(S) =1 then return ()

4 Compute v(SU{j}) for every j € [m]

5 if all of these are 1 then return {S}

6: Let A=10

7 for every item j € Allowed do

8 Remove the smallest element j from Allowed
9

Add the elements of Find(S U {j}, Allowed) to A
return A

Note that the recursive call to Find in line 9 computes all bundles that contain S, contain no
element of [j — 1], contain j and whose other elements are in {j + 1,...,n}. Induction can now
be used to argue the correctness of this procedure. It remains to show that the number of value
queries this protocol makes is poly(N;, price?™(A), m).

Consider running Find((), M), and construct a tree whose nodes are labeled by all those bundles
S for which Find(S, Allowed) is called for some set Allowed. The tree is rooted at () and the
children of a node S are those of the form S U {j} for some j € M. Note that a set S is passed as
input to Find(o,0) at most once, because we remove each j from Allowed whenever j is added to
S. So, counting the number of nodes in this tree will help us bound the number of recursive calls
to Find (S, Allowed) which will in turn help us bound the number of value queries. We count the
number of nodes by counting the number of leaves. The leaves S of this tree satisfy either:

(1.) v(S) =0, yet v(SU{j}) =1 for each j. In this case, S is a bundle strictly in M, i.e. S € A.

(2.) v(S) = 1. In this case, S must be of the form S"U{j}, where v(S") = 0. Now, Dobzinski claims
that S’ must be contained in some path from the root to a set in A. The idea behind this is
that the parent of S, being of price at most p; must be contained in some bundle T of price
p; strictly in the menu and this set T is what we want. The problem is that this bundle T
need not be a child of S’ in the tree defined by the recursion, since it may have been explored
earlier and the set Allowed may dictate that T cannot be a child of S’.

Because (2.) is not quite true, it turns out that the algorithm as stated can produce a tree with
~ 2" leaves when run on an instance where v([m — 1]) = 1,v([m]) = 1 and 0 everywhere else. For
completeness, we continue presenting Dobzinski’s proof assuming (2.). Each path from the root to
a set in A has length at most m. So there are at most mN; nodes along such paths. Via the case
analysis above, every call to Find corresponds to a node along such a path, or a child of a node
along such a path. Thus, there are at most m?N; calls to Find. Ignoring recursion, each call to
Find valuates v at most m + 1 times, and each evaluation uses at most price’®(A) value queries.
Thus, running Find (@), M) uses at most

(m + 1)m2Nyprice"™(A) = poly(m, Ny, price’™(A))

value queries, as desired.

3.3 Truthfulness of the new Mechanism

In this section, we explore the truthfulness of the mechanism described above. Recall that the
mechanism is to have the menu of each player ¢ presented by the others. The players then choose
their favorite options and the seller allocates items using the tie-breaking algorithm.

Firstly, telling the truth is an ex-post nash equillibrium. That is, provided the players # i
honestly present the menus to each player, it is preferable for player i to play honestly as well. This
can be seen as follows. Suppose the menus were honestly presented, then the players needn’t lie
about their most favorite option on the menu, since that is what they get anyway. Furthermore,
the players might as well tie break honestly, since their utilities for tied sets are the same. The
only other place a player could lie is while deciding the menu for other players. The menu that
any player 7 gets is guaranteed to be the correct menu M, _, because the other players are playing
honestly. Since he can only get something on the menu M, _, and this menu is fixed by the other
players regardless of what he does, he might as well tell the truth while constructing the menu for
other players.

It appears that player i’s menu is independent of what he does, and hence this mechanism
should be DSIC as well. This need not be true. For instance, if the strategy of players 2,...,n is
to present a non trivial menu to player 1 only if he reports his valuation as vy, then player 1 would
be better off by reporting his valuation as v, regardless of what his true valuation is. Dobzinski
points out that the existence of such a mechanism is an open question for more than three players.
That is, an efficient conversion of ex-post truthful mechanisms to DSIC mechanisms using menus
is open for n > 3. He presents a modification of the previously mentioned algorithm that works for
two players.

4 Demand Queries

Mechanisms using demand queries are notoriously hard to reason about, indeed, no lower bounds for
truthful demand-query mechanisms are known. However, Dobzinski thinks the following definition
and theorem may be a promising way to approach such lower bounds. The definitions may seem
a bit counter-intuitive or complex, but it will turn out to interact with the definition of a demand
query in just the right way.

Definition. 4 menu M is called o-min-affine if there exist price vectors p® (with each price

pg.i) € R>o U {oo}) and numbers r@ fori=1,..., a, where

M(S) =min | r® + Zpgi)
’ jes
The affinity aff(A) of a mechanism A is the minimal « such that all menus presented by A are
a-min-affine.

When we reasoned about value queries, we saw that the bundles strictly in a menu M determined
which bundles needed to be queried by the mechanism. Our reasoning for demand queries will go
in the other direction: we’ll show that the demand queries made to a bidder ¢ will determine the
affinity of the menu that is actually presented to the bidder i. Thus, if some menu requires high
affinity to represent, the demand query complexity of the mechanism will be high.

Theorem 6. Let A be a deterministic mechanism which is truthful for general valuations which
uses only demand queries. If A makes at most a demand queries, then every menu presented by A
is a-min-affine. In particular, aff(A) < dem(A).

Proof. Suppose menu M is presented to player ¢ on inputs v_;. Let vaq be the valuation function
such that vy (S) = M(S) if M(S) < oo and vp(S) = (m + 1)B otherwise, where B is strictly
larger than any finite price in M. The proof proceeds by showing that, when the mechanism A is
run on input (vaq, v—;), the price vectors on which the demand queries are made must describe the
menu, as specified in the definition of affinity.

Specifically, run the mechanism A on input (vaq,v—;), and denote the price vector of the kth
demand query made to player i by p®). Let D) be the set returned by player 4, i.e. ¢’s utility
maximizing bundle. Define

CETVECIES o
jeD®)

That is, %) gives the profit of player i on the kth demand query. Our goal will be to describe
the menu M in terms of the price vectors p(*) and profits r(*), as in the definition of affinity
M. Observe that the they already do this perfectly for D*), ie. M(D®) = r) 4 ZjeD(k> pg-k).
Intuitively, what we would like to show is that we can interpolate this fact between the different
sets D) using the fact that demand queries return the utility maximizing bundle. This is what
the next two claims do.

Claim 7. If M(S) < oo, then for all k we have M(S) < r¥) + Zjesp§'k)-

Proof. Because D*) is the profit-maximizing bundle on prices p*), we have

r®) = op(D®) = 5™ 0 > 0n(8) = 3 p = M) - S

jeD®) jes jes

Claim 8. If M(S) < oo, then there exists a k for which M(S) > r(*) 4 Zjesp§-k)

Proof. Case 1: First, suppose S is strictly in the menu M, that is, for each strict superset 1" of S,
we have M(T') > M(S). For € > 0, define a new valuation function v, such that v.(T") = vp(T) if
T # S, and ve(S) = vm(S) + €. Consider all € > 0 such that v remains monotone.

Observe that, by the definition of v, player ¢ will certainly get utility zero when his valuation
function is vas. However, if ¢’s input were v, he could get utility exactly € by receiving bundle S.
Because the mechanism A is truthful, this means it must allocate S to player i in this case. Thus, the
execution of the mechanism on input (v, v_;) cannot be the same as on input (v, v—;), specifically,
some demand query must return a different bundle from D®). Let k. denote the smallest k for
which the demand queries deviate, i.e. a bundle other than D®*) is returned. Because no valuation
other than that of S has changed, observe that this demand query must return S, and we have
UE(S) - Zjespg‘ke) > T(ke).

Now, k. can only increase as € — 0. Indeed, if § > €, we get v5(S) — Zjesp(.ks) > ve(S) —

J
> jes pg-ke) > r(ke) g0 the demand queries made on vs will deviate from those on v no later than

ke. Now, because the number of demand queries « is finite, we can take & = lim. o k., and let
€0 > 0 be such that whenever € < ¢y, we get k. = k. This tells us exactly that

upm(8) + € = ve(S) > r®) + Zpg-k)
jES

for all 0 < € < €p. Thus, M(S) = vae(S) > r*) + Zjespg-k), as desired.

10

Case 2: Now, we return to the second case, where S is not strictly in the menu, i.e. M(S) =
M(T") for some T" a strict superset of S. (Essentially we will show that the assumption that S
was strictly in the menu was without loss of generality). Let T" be a maximal such 7. Because
T is maximal, T is strictly in the menu M. Thus, case 1 applies to 1. So let k be such that

om(T) > r®) + ZJET p§-k). Indeed, this immediately implies that
M(S) = vaq(S) = o (T) = r*) + Zp§k) > (k) 4 Zp§‘k)
JerT j€s
O

We also need to handle the case where the bundle S cannot be acquired in the menu, i.e.
M(S) = oco. This lemma also explains why we defined va((S) the way we did in cases where

M(S) = 0.
Claim 9. If M(S) = oo, then r*) + Zjespgk) > (m+1)B for every k.

Proof. Suppose M(S) = oo. We get r*) > v ((S) — Zjespg-k) = (m+1)B — Z]ESp] , and
rearranging proves this direction.
Now, suppose M(S) < oc. O

Now time to fix some technicalities and wrap up.

(k)

(k) Joo if pg-k) >Borrk >B
bi = P; otherwise

Let M’ be the min-affine menu described by the prices p*) and the numbers (), that is, M’'(S) =
ming (r(k) + 2 jes i’ﬁ“) We'll show that M = M’. We need two simple cases:

Suppose M(S) < oo. By the first two claims there exists a k such that M(S) = r¥) +2 jes p§k).

Because M(S) < B, in particular each pgk) < B,sop N(k) = pgk) Observe also that we always have

;bﬁ,k/) > pgk/). Thus, M(S) = M'(S), as desired.
Now suppose M(S) = co. Consider any k. By the final claim, r(*) + >jes pg-k) > (m+1)B.
Now, the left hand side of this is a sum of at most m + 1 nonnegative numbers, so at least one

of these numbers must be at least B. If there is some j where p§k) > B, then 13§.k) = 00, SO

) + Z]e pj = co. If #®) > B, then the previous sentence holds for every j. Thus, we have
k) + > Spj = oo for every k, so M'(S) = oo, as desired. O

4.1 Upper Bound

We mention that no menu reconstruction theorem exists for demand queries. That is, there are
mechanisms that make polynomially many demand queries to find the price and the allocation, but
to reconstruct the menu requires exponentially many demand queries. The example of this given
in Dobzinski’s full paper is actually fairly simple, but the analysis is somewhat complex. See the
paper for details.

11

References

[BMW18]

[Dob16]

[Dugl1]

[DV12]

[DV16]

[LS05)

Mark Braverman, Jieming Mao, and S. Matthew Weinberg. “On Simultaneous Two-
player Combinatorial Auctions”. In: Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms. SODA ’18. New Orleans, Louisiana: Society
for Industrial and Applied Mathematics, 2018, pp. 2256—2273. 1SBN: 978-1-6119-7503-1.
URL: http://dl.acm.org/citation.cfm?id=3174304.3175451.

Shahar Dobzinski. “Computational Efficiency Requires Simple Taxation”. In: CoRR
abs/1604.01971 (2016). arXiv: 1604 .01971. URL: http://arxiv.org/abs/1604.
01971.

Shaddin Dughmi. “Limitations of randomized mechanisms for combinatorial auctions”.
In: In Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science
(FOCS. 2011.

Shahar Dobzinski and Jan Vondrak. “The Computational Complexity of Truthfulness
in Combinatorial Auctions”. In: Proceedings of the 13th ACM Conference on Electronic
Commerce. EC ’12. Valencia, Spain: ACM, 2012, pp. 405-422. 1SBN: 978-1-4503-1415-2.
DOI: 10.1145/2229012.2229044. URL: http://doi.acm.org/10.1145/2229012.
2229044.

Shahar Dobzinski and Jan Vondrék. “Impossibility Results for Truthful Combinatorial
Auctions with Submodular Valuations”. In: J. ACM 63.1 (Feb. 2016), 5:1-5:19. 1SSN:
0004-5411. pOI: 10.1145/2786754. URL: http://doi.acm.org/10.1145/2786754.

Ron Lavi and Chaitanya Swamy. “Truthful and near-optimal mechanism design via
linear programming”. In: 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05) (2005), pp. 595-604.

12

