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Abstract

When a ball is rolling down a hill with an arbitrarily large coe�cient

of friction, it rolls with an acceleration less that it would if it was slipping.

Di�erent shapes roll at di�erent accelerations, regardless of the scale of

the object. A �wheel with pegs� can produce accelerations arbitrarily close

to the slipping-acceleration.

1 General Physics

Throughout the rest of this paper, we will consider an incline elevated to an
angle θ above the horizontal. Upon this ramp there will be objects of mass M
which roll about an axis with a distance R from the incline.

When a rollable object sits on an incline, there are three forces acting upon
it, the weight, the friction, and the normal force. Weight W can be broken
into two components, W⊥ perpendicular to the incline and W‖ parallel to the
incline. W⊥ and N (the normal force) are equal in magnitude and opposite in
direction. This leaves two other forces, both parallel to the incline, W‖ and the
frictional force f . So we have∑

F =Ma =W‖ − f =Mg sin θ − f

and thus

a = g sin θ − f/M

Furthermore, the frictional force produces a torque on the object. All the
other forces act on the objects center, and thus have no torque. The frictional
force, however, acts at a distance R from the axis of rotation, perpendicular to
the radius itself. Thus, ∑

τ = Iα = fR.

From circular motion we know that Rα = a, so
∑
τ = Ia/R, so we �nd that

a = fR2/I
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Now we plunge into the algebra

a = g sin θ − f/M = fR2/I

g sin θ = f(R2/I + 1/M)

f =
g sin θ

R2/I + 1/M

and �nally

a = fR2/I =
R2

I

g sin θ

R2/I + 1/M
=

g sin θ

1 + I/(R2M)

Much of the remainder of the paper is concerned with the quantity

κ =
I

R2M

which determines how close to the optimal slip-acceleration (g sin θ) the
rolling acceleration will be.

2 Some Races

Let us �nd the moments of inertia of some simple shapes, then plug then into
the formula above to �nd the acceleration those objects will have (depending
on the proportions?). In the following calculations, δ is the density and M is
the mass, and if applicable, R is the radius and H is the height.

For a solid cylinder,

˚
r2δdV =

ˆ 2π

0

ˆ H

0

ˆ R

0

r2δr drdzdθ =
1

2
πδHR4 =

1

2
MR2

For a hollow cylinder,

¨
r2δdσ = πδHR4 =MR2

And �nally, for a solid sphere,

˚
r2δdV =

ˆ 2π

0

ˆ π

0

ˆ R

0

(ρ sin θ)2δρ2 sinφ dρdφdθ =
8π

15
δR5 =

2

5
MR2

Thus, for a solid cylinder of mass M and radius R,

a =
g sin θ

1 + MR2/2
MR2

=
2

3
g sin θ
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and just like magic, both M and R drop out of the formula. Thus, any solid
cylinder, of any size, will have the same acceleration on the same incline.

For a hollow cylinder,

κ =
I

R2M
= 1

a =
g sin θ

1 + 1
=

1

2
g sin θ

and for a solid sphere,

κ =
2

5

a =
g sin θ

1 + 2/5
=

5

7
g sin θ

Thus, the solid sphere, of any size, will win in a race down a hill, because it
has the smallest κ.

3 Wheels with Pegs

Given the formula for κ found above, one strategy to increase the acceleration
of a rolling object is to decrease the ratio of its moment of inertia to its mass,
while holding the radius to the incline constant. One shape that may allow the
freedom to do this would be a �wheel with pegs,� similar to a �ywheel. This
wheel would have one central disc and a cylinders on each side, jutting out
perpendicular to the disc. The central disc has a radius R and width W , while
the cylinders each have radius SR and length LW . Summing the masses and
moments of inertia of the three cylinders, you get

M = (2π(SR)2(LW ) + πR2W )δ = πδ(R2W )(2S2L+ 1)

I = 2
π

2
δ(SR)4(LW ) +

π

2
δ(R)4(W ) =

π

2
δ(R4W )(2SL+ 1)

Thus

κ =
π
2 δ(R

4W )(2S4L+ 1)

R2πδ(R2W )(2S2L+ 1)
=

2S4L+ 1

4S2L+ 2

Now, we will investigate strategies for minimizing theta, and thus maximiz-
ing acceleration.

lim
L→∞

κ = lim
L→∞

2S4 + L−1

4S2 + 2L−1
=
S2

2
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Thus, increasing the length of the pegs will always decrease κ, but not beyond
a speci�c limit de�ned by the radius of the cylinders.

Now we know how to �minimize� κ by manipulating length, but what if
we have a �xed length proportion L? In this case, there is a speci�c radius
proportion S that produces the highest acceleration. To do this, we derive κ
and manipulate and plug back in the result.

∂κ

∂S
=

(8S3L)(4S2L+ 2)− (2S4L+ 1)(8SL)

(4S2L+ 2)2

which passes from negative to positive when

2S4L+ 2S2 − 1

passes from negative to positive. This is when

S2 = S2
min =

√
1 + 2L− 1

2L

at which point

κ = κmin =
1 + 2L−

√
1 + 2L

2L
√
1 + 2L

Finally, note that

lim
L→∞

κmin = lim
L→∞

L−3/2 + 2L−1/2 −
√
L−3 + 2L−2

2
√
L−1 + 2

=
0

2
√
2
= 0

Thus we have a shape that we can manipulate to have acceleration arbitrarily
close to that of a slipping object by increasing the L and setting S at the
corresponding value.
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