
Password Counting

Clay Thomas

2013

1 Statement of the Problem

Consider a password that uses an alphabet of a characters. Every
character of the alphabet is used at least once. The password is of
length l. How many possible passwords are there?

This problem would arise if you saw �ngerprints on a characters of a keypad
and you knew the password had length l.

2 Recursion

If all a characters did not have to be used, the problem would be fairly simple.
You could have l choices of a options, for al options. Our approach is to begin
with this value, and then subtract away the number of situations where one or
more of the characters are not used. To do this, we index by the number of
characters which are not used, and implement recursion.

Let Rl(a) be the number of passwords of length l, using all of a characters.
Then, there are

(
a
1

)
Rl(a − 1) ways to make a password that leaves out exactly

one of the characters. Note that this value is
(
a
1

)
(the number of ways to leave a

character out of the set of used characters) times Rl(a−1) (the number of ways
to then make a password that uses all of the remaining characters). Similarly,
there are

(
a
2

)
Rl(a − 2) ways to leave out exactly two of the characters, and(

a
3

)
Rl(a− 3) ways to leave out exactly three.1

Extending the above logic, we see that

Rl(a) = al −
a−1∑
k=1

(
a

k

)
Rl(a− k)

Our necessary starting conditions are that Rl(1) = 1, seeing as how there
is only length l password using a single given character. Let us additionally

1All the preceding examples assume a is large enough to avoid calling Rl with a negative

argument.

1



de�ne Rl(0) = 0, because that seems like how it should be.2 Additionally, we
can adjust the sum (and use the fact that

(
a
k

)
=
(

a
a−k

)
) to reach

Rl(a) = al −
a−1∑
k=0

(
a

k

)
Rl(k)

3 Induction

Our notation Rl(a) (letting l be a subscript) is very suggestive of what we are
about to do: �x a over certain values and let l very. Using our de�nition, we
get the following sequence

Rl(1) = 1

Rl(2) = 2l − 2

Rl(3) = 3l − 3 · 2l + 3

Rl(4) = 4l − 4 · 3l + 6 · 2l − 4

= 1 · 4l − 4 · 3l + 6 · 2l − 4 · 1l + 1 · 0l

If you can recognize binomial coe�cients, you will notice a pattern beginning
to emerge, as highlighted by the �nal line above. De�ne the function

Cl(a) =

a−1∑
j=0

(−1)j
(
a

j

)
(a− j)l

which extends the pattern recognized above. We now use induction to prove
that Rl(a) = Cl(a).

First, note that Rl(1) = Cl(1). Next, assume that Rl(m) = Cl(m) for
m = 1...n. Then,

Rl(n+ 1) = (n+ 1)l −
n∑

k=1

(
n+ 1

k

)
Cl(k)

= (n+ 1)l −
n∑

k=1


(
n+ 1

k

) k−1∑
j=0

[
(−1)j

(
k

j

)
(k − j)l

]
= (n+ 1)l −

n∑
k=1

k∑
j=0

[
(−1)j

(
n+ 1

k

)(
k

j

)
(k − j)l

]
2We could have started by de�ning Rl(0) = 0, and then deriving Rl(1). However, it seems

very unnatural to ground your answers on a password that uses an alphabet of zero characters.

2



Now we must change the order of integration so that we can group together
where (k − j) is constant. The double sum runs over all pairs (k, j) where
k = 1...n and correspondingly j = 0...k − 1. This corresponds to a triangle
of points with integer coordinates. We make the substitution c = k − j, and
retain j as our second indexing variable. Then our sum runs over c = 1...n and
j = 0...n − c. Redoing the sum, making the substitution, and expanding the
binomial coe�cients, we obtain

Rl(n+ 1) = (n+ 1)l −
n∑

c=1

n−c∑
j=0

[
(−1)j

(
n+ 1

j + c

)(
j + c

j

)
(c)l
]

= (n+ 1)l −
n∑

c=1

cl
n−c∑
j=0

[
(−1)j

(n+ 1)!

(n+ 1− (j + c))!j!c!

]
= (n+ 1)l −

n∑
c=1

cl
(n+ 1)!

c!

n−c∑
j=0

[
(−1)j

1

(n+ 1− (j + c))!j!

]
Now, to simplify the innermost sum, consider the binomial expansion

0 = (1− 1)n−c+1 =

n−c+1∑
j=0

(−1)j
(
n+ 1− c

j

)

=

n−c+1∑
j=0

(−1)j
(n− c+ 1)!

(n+ 1− (c+ j))!j!

By separating the last term from the sum, then solving for the rest of the
sum, we see

n−c∑
j=0

(−1)j
(n− c+ 1)!

(n+ 1− (c+ j))!j!
= −(−1)n−c (n− c+ 1)!

(0)!(n− c+ 1)!
= (−1)n−c+1

Now we return to Rl(n+ 1), and multiply in a factor of (n− c+ 1)! to the
innermost summand. We then simply, using binomial coe�cients and the sum
above, to obtain

Rl(n+ 1) = (n+ 1)l −
n∑

c=1

cl
(n+ 1)!

c!(n+ 1− c)!

n−c∑
j=0

[
(−1)j

(n− c+ 1)!

(n+ 1− (j + c))!j!

]
= (n+ 1)l −

n∑
c=1

{
cl
(
n+ 1

c

)
· (−1)n−c+1

}

=
n+1∑
c=1

(−1)n−c

(
n+ 1

c

)
cl

3



=

n+1∑
i=0

(−1)i
(
n+ 1

i

)
(n+ 1− i)l = Cl(n+ 1)

Thus we arrive via induction upon the result that Rl(n) = Cl(n) for all
n ≥ 1.

4 Brute Force Veri�cation

The following code segment in C produces a function that runs through all
possible passwords and counts the number of those that use every available
character. We don't really feel like documenting this code right now, but you
can check it if you want. I guess the comments are pretty good. Anyway, it
agreed Rl(a) for many values of l and a.

int combsBrute( int a, int l) {

//tests all password and counts up the ones that use every character

//passwords are represented by an array of integers in the set {0...a-1}

//thus having a characters

int ar[l];

for( int i=0; i<l; i++) ar[i]=0;

int numb = 0;

while ( increment(ar,a,l) ){

numb+= arrayContainsTo( ar, l, a);

}

return numb;

}

int arrayContainsTo( int ar[], int len, int base){

//test if ar contains all the numbers in 0...base-1

for(int i=0; i<base && i<base; i++)

if ( !arrayContains(ar, len, i) )

return 0;

return 1;

}

int arrayContains( int ar[], int len, int test){

//Test if ar contains a particular number test

int i;

for( i=0; i<len; i++)

if( ar[i] == test)0

return 1;

return 0;

}

int increment( int ar[], int base, int len ){

//treat ar as a little endian number in the specified base

//increment it and return 0 if the number overflows to more than len places

int i=0;

while( ar[i]==base-1 ){

4



ar[i]=0;

i++;

if( i==len )

return 0;

}

ar[i]++;

return 1;

}

5 Numerical Values

Here is a table of a few values, as agreed upon by both the above brute force
code and Cl(a), with values of a on the left and l on the right. If you are a
hacker who is somehow in the extremely ridiculous situation described, this is
what you came for I guess.

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 2 6 14 30 62 126 254 510 1022

3 6 36 150 540 1806 5796 18150 55980

4 24 240 1560 8400 40824 186480 818520

5 120 1800 16800 126000 834120 5103000

6 720 15120 191520 1905120 16435440

7 5040 141120 2328480 29635200

8 40320 1451520 142558344

9 362880 1103271435

10 213161150
Before you leave, be sure to appreciate how the values in this table are a!

along the diagonal. It would be pretty interesting to know what the maximizing
value of a is for a given l, I guess. There doesn't seem to be a super regular
pattern for that.

5


